Table of Contents

Part I. Python and Finance

1. Why Python for Finance?
 - What is Python? 3
 - Brief History of Python 3
 - The Python Ecosystem 5
 - Python User Spectrum 7
 - The Scientific Stack 8
 - Technology in Finance 9
 - Technology Spending 9
 - Technology as Enabler 10
 - Technology and Talent as Barriers to Entry 10
 - Ever Increasing Speeds, Frequencies, Data Volumes 11
 - The Rise of Real-Time Analytics 12
 - Python for Finance 13
 - Finance and Python Syntax 13
 - Efficiency and Productivity Through Python 17
 - From Prototyping to Production 21
 - Conclusions 22
 - Further Reading 22

2. Infrastructure and Tools.
 - Python Deployment 26
 - Anaconda 26
 - Wakari 32
 - Tools 33
 - Python 34
 - IPython 34
 - Spyder 44
Part II. Financial Analytics and Development

4. Data Types and Structures ... 79
 Basic Data Types
 Integers
 Floats
 Strings
 Basic Data Structures
 Tuples
 Lists
 Excursion: Control Structures
 Excursion: Functional Programming
 Dicts
 Sets
 NumPy Data Structures
 Arrays with Python Lists
 Regular NumPy Arrays
 Structured Arrays
 Vectorization of Code
 Basic Vectorization
 Memory Layout
 Conclusions
 Further Reading

5. Data Visualization ... 107
 Two-Dimensional Plotting
 One-Dimensional Data Set

Conclusions
Further Reading
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel Computing</td>
<td>209</td>
</tr>
<tr>
<td>The Monte Carlo Algorithm</td>
<td>209</td>
</tr>
<tr>
<td>The Sequential Calculation</td>
<td>210</td>
</tr>
<tr>
<td>The Parallel Calculation</td>
<td>211</td>
</tr>
<tr>
<td>Performance Comparison</td>
<td>214</td>
</tr>
<tr>
<td>Dynamic Compiling</td>
<td>215</td>
</tr>
<tr>
<td>Introductory Example</td>
<td>215</td>
</tr>
<tr>
<td>Binomial Option Pricing</td>
<td>216</td>
</tr>
<tr>
<td>Static Compiling with Cython</td>
<td>221</td>
</tr>
<tr>
<td>Generation of Random Numbers on GPUs</td>
<td>224</td>
</tr>
<tr>
<td>Conclusions</td>
<td>228</td>
</tr>
<tr>
<td>Further Reading</td>
<td>228</td>
</tr>
</tbody>
</table>

9. **Mathematical Tools.** 231

- Approximation 231
- Regression 232
- Interpolation 244

- Convex Optimization 247
 - Global Optimization 249
 - Local Optimization 250
 - Constrained Optimization 251

- Integration 253
 - Numerical Integration 255
 - Integration by Simulation 256

- Symbolic Computation 256
 - Basics 257
 - Equations 258
 - Integration 259
 - Differentiation 260

Conclusions 261
Further Reading 262

10. **Stochastics.** 256

- Random Numbers 264
- Simulation 269
 - Random Variables 269
 - Stochastic Processes 272
 - Variance Reduction 286

- Valuation 289
 - European Options 289
 - American Options 293
 - Risk Measures 296
Basics of Python Classes 380
Simple Short Rate Class 385
Cash Flow Series Class 389
Graphical User Interfaces 391
Short Rate Class with GUI 391
Updating of Values 394
Cash Flows Series Class with GUI 396
Conclusions 399
Further Reading 399

14. Web Integration. 401
Web Basics 402
ftpclub 402
httplib 405
urllib 406
Web Plotting 408
Static Plots 408
Interactive Plots 411
Real-Time Plots 414
Rapid Web Applications 421
Traders’ Chat Room 423
Data Modeling 423
The Python Code 424
Templating 431
Styling 436
Web Services 438
The Financial Model 439
The Implementation 440
Conclusions 447
Further Reading 448

Part III. Derivatives Analytics Library

15. Valuation Framework. 451
Fundamental Theorem of Asset Pricing 451
A Simple Example 452
The General Results 453
Risk-Neutral Discounting 454
Modelling and Handling Dates 454
Constant Short Rate 456
Market Environments 458
 - Random Number Generation
 - Generic Simulation Class
 - Geometric Brownian Motion
 - The Simulation Class
 - A Use Case
 - Jump Diffusion
 - The Simulation Class
 - A Use Case
 - Square-Root Diffusion
 - The Simulation Class
 - A Use Case
 - Conclusions
 - Further Reading

17. Derivatives Valuation.
 - Generic Valuation Class
 - European Exercise
 - The Valuation Class
 - A Use Case
 - American Exercise
 - Least-Squares Monte Carlo
 - The Valuation Class
 - A Use Case
 - Conclusions
 - Further Reading

18. Portfolio Valuation.
 - Derivatives Positions
 - The Class
 - A Use Case
 - Derivatives Portfolios
 - The Class
 - A Use Case
 - Conclusions
 - Further Reading

19. Volatility Options.
 - The VSTOXX Data
 - Conclusions
 - Further Reading
VSTOXX Index Data 522
VSTOXX Futures Data 523
VSTOXX Options Data 525
Model Calibration 527
 Relevant Market Data 527
 Option Modelling 528
 Calibration Procedure 530
American Options on the VSTOXX 535
 Modelling Option Positions 535
 The Options Portfolio 537
Conclusions 538
Further Reading 538

A. Selected Best Practices ... 541

B. Call Option Class ... 549