Eurex Tutorial with Examples based on the VSTOXX Volatility Index
Dr. Yves J. Hilpisch
The Python Quants GmbH
PyData London – 21. February 2014
You find the presentation and the IPython Notebook here:
A brief bio:
See www.hilpisch.com.
Corporations, decision makers and analysts nowadays generally face a number of problems with data:
In addition to these data-oriented problems, there typically are organizational issues that have to be considered:
This tutorial focuses on
It does not address such important issues like
A fundamental Python stack for interactive data analytics and visualization should at least contain the following libraries tools:
It is best to use either the Python distribution Anaconda or the Web-based analytics environment Wakari. Both provide almost "complete" Python environments.
For example, pandas can, among others, help with the following data-related problems:
As a simple example let's generate a NumPy array with five sets of 1000 (pseudo-)random numbers each.
import numpy as np # this imports the NumPy library
data = np.random.standard_normal((5, 1000)) # generate 5 sets with 1000 rn each
data[:, :5].round(3) # print first five values of each set rounded to 3 digits
array([[ 1.304, 0.641, -0.758, 0.792, 1.963], [ 0.955, -0.482, 1.146, -0.076, 0.013], [-1.67 , 0.814, -0.172, -0.57 , -1.921], [-0.813, 1.569, -0.019, -0.658, -1.259], [-1.777, -2.025, -0.32 , -0.684, 0.157]])
Let's plot a histogram of the 1st, 2nd and 3rd data set.
import matplotlib as mpl # this imports matplotlib
import matplotlib.pyplot as plt # this imports matplotlib.pyplot
%matplotlib inline
# inline plotting
plt.hist([data[0], data[1], data[2]], label=['Set 0', 'Set 1', 'Set 2'])
plt.grid(True) # grid for better readability
plt.legend()
<matplotlib.legend.Legend at 0x105baab50>
We then want to plot the 'running' cumulative sum of each set.
plt.figure() # initialize figure object
plt.grid(True)
for data_set in enumerate(data): # iterate over all rows
plt.plot(data_set[1].cumsum(), label='Set %s' % data_set[0])
# plot the running cumulative sums for each row
plt.legend(loc=0) # write legend with labels
<matplotlib.legend.Legend at 0x105eabb50>
Some fundamental statistics from our data sets.
data.mean(axis=1) # average value of the 5 sets
array([-0.04422916, -0.08201617, 0.01026341, -0.0120168 , -0.01186359])
data.std(axis=1) # standard deviation of the 5 sets
array([ 1.00640752, 1.00715935, 1.01333978, 1.00522446, 0.99632747])
np.corrcoef(data).round(3) # correltion matrix of the 5 data sets
array([[ 1. , -0.029, -0.105, 0.001, 0.009], [-0.029, 1. , 0.02 , -0.024, 0.03 ], [-0.105, 0.02 , 1. , -0.005, -0.003], [ 0.001, -0.024, -0.005, 1. , -0.013], [ 0.009, 0.03 , -0.003, -0.013, 1. ]])
We need to make a couple of imports for what is to come.
import pandas as pd
import pandas.io.data as pdd
from urllib import urlretrieve
The convenience function DataReader makes it easy to read historical stock price data from Yahoo! Finance (http://finance.yahoo.com).
index = pdd.DataReader('^GDAXI', data_source='yahoo', start='2007/3/30')
# e.g. the EURO STOXX 50 ticker symbol -- ^SX5E
index.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 1761 entries, 2007-03-30 00:00:00 to 2014-02-19 00:00:00 Data columns (total 6 columns): Open 1761 non-null float64 High 1761 non-null float64 Low 1761 non-null float64 Close 1761 non-null float64 Volume 1761 non-null int64 Adj Close 1761 non-null float64 dtypes: float64(5), int64(1)
pandas strength is the handling of indexed/labeled/structured data, like times series data.
index.tail()
Open | High | Low | Close | Volume | Adj Close | |
---|---|---|---|---|---|---|
Date | ||||||
2014-02-13 | 9522.66 | 9600.64 | 9479.86 | 9596.77 | 93209100 | 9596.77 |
2014-02-14 | 9615.52 | 9677.53 | 9593.37 | 9662.40 | 91504800 | 9662.40 |
2014-02-17 | 9661.80 | 9682.19 | 9645.51 | 9656.76 | 45850100 | 9656.76 |
2014-02-18 | 9674.80 | 9690.97 | 9614.40 | 9659.78 | 58827300 | 9659.78 |
2014-02-19 | 9641.45 | 9695.86 | 9596.42 | 9660.05 | 72892900 | 9660.05 |
5 rows × 6 columns
pandas makes it easy to implement vectorized operations, like calculating log-returns over whole time series.
index['Returns'] = np.log(index['Close'] / index['Close'].shift(1))
In addition, pandas makes plotting quite simple and compact.
index[['Close', 'Returns']].plot(subplots=True, style='b', figsize=(8, 5))
array([<matplotlib.axes.AxesSubplot object at 0x1077eb950>, <matplotlib.axes.AxesSubplot object at 0x107802bd0>], dtype=object)
We now want to check how annual volatility changes over time.
index['Mov_Vol'] = pd.rolling_std(index['Returns'], window=252) * np.sqrt(252)
Obviously, the annual volatility changes significantly over time.
index[['Close', 'Returns', 'Mov_Vol']].plot(subplots=True, style='b', figsize=(8, 5))
array([<matplotlib.axes.AxesSubplot object at 0x1079804d0>, <matplotlib.axes.AxesSubplot object at 0x1079a6f50>, <matplotlib.axes.AxesSubplot object at 0x108352ad0>], dtype=object)
Trend-based investment strategy with the EURO STOXX 50 index:
Signal generation:
It is a stylized fact that stock indexes and related volatility indexes are highly negatively correlated. The following example analyzes this stylized fact based on the EURO STOXX 50 stock index and the VSTOXX volatility index using Ordinary Least-Squares regession (OLS).
First, we collect historical data for both the EURO STOXX 50 stock and the VSTOXX volatility index.
import pandas as pd
import datetime as dt
from urllib import urlretrieve
es_url = 'http://www.stoxx.com/download/historical_values/hbrbcpe.txt'
vs_url = 'http://www.stoxx.com/download/historical_values/h_vstoxx.txt'
urlretrieve(es_url, 'es.txt')
urlretrieve(vs_url, 'vs.txt')
('vs.txt', <httplib.HTTPMessage instance at 0x108360638>)
The EURO STOXX 50 data is not yet in the right format. Some house cleaning is necessary (I).
lines = open('es.txt').readlines() # reads the whole file line-by-line
lines[:5] # header not well formatted
['Price Indices - EURO Currency\n', 'Date ;Blue-Chip;Blue-Chip;Broad ; Broad ;Ex UK ;Ex Euro Zone;Blue-Chip; Broad\n', ' ; Europe ;Euro-Zone;Europe ;Euro-Zone; ; ; Nordic ; Nordic\n', ' ; SX5P ; SX5E ;SXXP ;SXXE ; SXXF ; SXXA ; DK5F ; DKXF\n', '31.12.1986;775.00 ; 900.82 ; 82.76 ; 98.58 ; 98.06 ; 69.06 ; 645.26 ; 65.56\n']
The EURO STOXX 50 data is not yet in the right format. Some house cleaning is necessary (II).
lines[3883:3890] # from 27.12.2001 additional semi-colon
['20.12.2001;3537.34; 3617.47; 286.07; 300.97; 317.10; 267.23; 5268.36 ; 363.19\n', '21.12.2001;3616.80; 3696.44; 291.39; 306.60; 322.55; 272.18; 5360.52 ; 370.94\n', '24.12.2001;3622.85; 3696.98; 291.90; 306.77; 322.69; 272.95; 5360.52 ; 370.94\n', '27.12.2001;3686.23; 3778.39; 297.11; 312.43; 327.57; 277.68; 5479.59; 378.69;\n', '28.12.2001;3706.93; 3806.13; 298.73; 314.52; 329.94; 278.87; 5585.35; 386.99;\n', '02.01.2002;3627.81; 3755.56; 293.69; 311.43; 326.77; 272.38; 5522.25; 380.09;\n', '03.01.2002;3699.09; 3833.09; 299.09; 317.54; 332.62; 277.08; 5722.57; 396.12;\n']
The EURO STOXX 50 data is not yet in the right format. Some house cleaning is necessary (III).
lines = open('es.txt').readlines() # reads the whole file line-by-line
new_file = open('es50.txt', 'w') # opens a new file
new_file.writelines('date' + lines[3][:-1].replace(' ', '') + ';DEL' + lines[3][-1])
# writes the corrected third line (additional column name)
# of the orginal file as first line of new file
new_file.writelines(lines[4:-1]) # writes the remaining lines of the orginal file
The EURO STOXX 50 data is not yet in the right format. Some house cleaning is necessary (IV).
list(open('es50.txt'))[:5] # opens the new file for inspection
['date;SX5P;SX5E;SXXP;SXXE;SXXF;SXXA;DK5F;DKXF;DEL\n', '31.12.1986;775.00 ; 900.82 ; 82.76 ; 98.58 ; 98.06 ; 69.06 ; 645.26 ; 65.56\n', '01.01.1987;775.00 ; 900.82 ; 82.76 ; 98.58 ; 98.06 ; 69.06 ; 645.26 ; 65.56\n', '02.01.1987;770.89 ; 891.78 ; 82.57 ; 97.80 ; 97.43 ; 69.37 ; 647.62 ; 65.81\n', '05.01.1987;771.89 ; 898.33 ; 82.82 ; 98.60 ; 98.19 ; 69.16 ; 649.94 ; 65.82\n']
Now, the data can be safely read into a DataFrame object.
es = pd.read_csv('es50.txt', index_col=0, parse_dates=True, sep=';', dayfirst=True)
del es['DEL'] # delete the helper column
es.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 6997 entries, 1986-12-31 00:00:00 to 2014-02-18 00:00:00 Data columns (total 8 columns): SX5P 6997 non-null float64 SX5E 6997 non-null float64 SXXP 6997 non-null float64 SXXE 6997 non-null object SXXF 6996 non-null float64 SXXA 6996 non-null float64 DK5F 6996 non-null float64 DKXF 6996 non-null float64 dtypes: float64(7), object(1)
The VSTOXX data can be read without touching the raw data.
vs = pd.read_csv('vs.txt', index_col=0, header=2, parse_dates=True, sep=',', dayfirst=True)
# you can alternatively read from the Web source directly
# without saving the csv file to disk:
# vs = pd.read_csv(vs_url, index_col=0, header=2,
# parse_dates=True, sep=',', dayfirst=True)
We now merge the data for further analysis.
import datetime as dt
data = pd.DataFrame({'EUROSTOXX' :
es['SX5E'][es.index > dt.datetime(1999, 12, 31)]})
data = data.join(pd.DataFrame({'VSTOXX' :
vs['V2TX'][vs.index > dt.datetime(1999, 12, 31)]}))
data.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 3622 entries, 2000-01-03 00:00:00 to 2014-02-18 00:00:00 Data columns (total 2 columns): EUROSTOXX 3622 non-null float64 VSTOXX 3600 non-null float64 dtypes: float64(2)
Let's inspect the two time series.
data.head()
EUROSTOXX | VSTOXX | |
---|---|---|
date | ||
2000-01-03 | 4849.22 | 30.9845 |
2000-01-04 | 4657.83 | 33.2225 |
2000-01-05 | 4541.75 | 32.5944 |
2000-01-06 | 4500.69 | 31.1811 |
2000-01-07 | 4648.27 | 27.4407 |
5 rows × 2 columns
A picture can tell almost the complete story.
data.plot(subplots=True, grid=True, style='b', figsize=(10, 5))
array([<matplotlib.axes.AxesSubplot object at 0x108468c90>, <matplotlib.axes.AxesSubplot object at 0x1078ce090>], dtype=object)
We now generate log returns for both time series.
rets = np.log(data / data.shift(1))
rets.head()
EUROSTOXX | VSTOXX | |
---|---|---|
date | ||
2000-01-03 | NaN | NaN |
2000-01-04 | -0.040268 | 0.069740 |
2000-01-05 | -0.025237 | -0.019087 |
2000-01-06 | -0.009082 | -0.044328 |
2000-01-07 | 0.032264 | -0.127785 |
5 rows × 2 columns
To this new data set, also stored in a DataFrame object, we apply OLS.
xdat = rets['EUROSTOXX']
ydat = rets['VSTOXX']
model = pd.ols(y=ydat, x=xdat)
model
-------------------------Summary of Regression Analysis------------------------- Formula: Y ~ <x> + <intercept> Number of Observations: 3577 Number of Degrees of Freedom: 2 R-squared: 0.5544 Adj R-squared: 0.5543 Rmse: 0.0379 F-stat (1, 3575): 4447.8744, p-value: 0.0000 Degrees of Freedom: model 1, resid 3575 -----------------------Summary of Estimated Coefficients------------------------ Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5% -------------------------------------------------------------------------------- x -2.7183 0.0408 -66.69 0.0000 -2.7982 -2.6384 intercept -0.0007 0.0006 -1.10 0.2704 -0.0019 0.0005 ---------------------------------End of Summary---------------------------------
Again, we want to see how our results look graphically.
plt.plot(xdat, ydat, 'r.')
ax = plt.axis() # grab axis values
x = np.linspace(ax[0], ax[1] + 0.01)
plt.plot(x, model.beta[1] + model.beta[0] * x, 'b', lw=2)
plt.grid(True)
plt.axis('tight')
(-0.10000000000000001, 0.16, -0.43562265909764758, 0.43687964474802654)
Let us see if we can identify systematics over time. And indeed, during the crisis 2007/2008 (yellow dots) volatility has been more pronounced than more recently (red dots).
mpl_dates = mpl.dates.date2num(rets.index)
plt.figure(figsize=(8, 4))
plt.scatter(rets['EUROSTOXX'], rets['VSTOXX'], c=mpl_dates, marker='o')
plt.grid(True)
plt.xlabel('EUROSTOXX')
plt.ylabel('VSTOXX')
plt.colorbar(ticks=mpl.dates.DayLocator(interval=250),
format=mpl.dates.DateFormatter('%d %b %y'))
<matplotlib.colorbar.Colorbar instance at 0x10afb5bd8>
We want to test whether the EURO STOXX 50 and/or the VSTOXX returns are normally distributed or not (e.g. if they might have fat tails). We want to do a
Add on: plot a histogram of the log return frequencies and compare that to a normal distribution with same mean and variance (using e.g. norm.pdf from scipy.stats)
There has been a number of studies which have illustrated that constant proportion investments in volatility derivatives – given a diversified equity portfolio – might improve investment performance considerably. See, for instance, the study
The Benefits of Volatility Derivatives in Equity Portfolio Management
We now want to replicate (in a simplified fashion) what you can flexibly test here on the basis of two backtesting applications for VSTOXX-based investment strategies:
The strategy we are going to implement and test is characterized as follows:
We already have the necessary data available. However, we want to drop 'NaN' values and want to normalize the index values.
data = data.dropna()
data = data / data.ix[0] * 100
data.head()
EUROSTOXX | VSTOXX | |
---|---|---|
date | ||
2000-01-03 | 100.000000 | 100.000000 |
2000-01-04 | 96.053180 | 107.222966 |
2000-01-05 | 93.659393 | 105.195824 |
2000-01-06 | 92.812659 | 100.634511 |
2000-01-07 | 95.856035 | 88.562668 |
5 rows × 2 columns
First, the initial invest.
invest = 100
cratio = 0.3
data['Equity'] = (1 - cratio) * invest / data['EUROSTOXX'][0]
data['Volatility'] = cratio * invest / data['VSTOXX'][0]
This can already be considered an static investment strategy.
data['Static'] = (data['Equity'] * data['EUROSTOXX']
+ data['Volatility'] * data['VSTOXX'])
data[['EUROSTOXX', 'Static']].plot(figsize=(10, 5))
<matplotlib.axes.AxesSubplot at 0x108981990>
Second, the dynamic strategy with daily adjustments to keep the value ratio constant.
for i in range(1, len(data)):
evalue = data['Equity'][i - 1] * data['EUROSTOXX'][i]
# value of equity position
vvalue = data['Volatility'][i - 1] * data['VSTOXX'][i]
# value of volatility position
tvalue = evalue + vvalue
# total wealth
data['Equity'][i] = (1 - cratio) * tvalue / data['EUROSTOXX'][i]
# re-allocation of total wealth to equity ...
data['Volatility'][i] = cratio * tvalue / data['VSTOXX'][i]
# ... and volatility position
Third, the total wealth position.
data['Dynamic'] = (data['Equity'] * data['EUROSTOXX']
+ data['Volatility'] * data['VSTOXX'])
data.head()
EUROSTOXX | VSTOXX | Equity | Volatility | Static | Dynamic | |
---|---|---|---|---|---|---|
date | ||||||
2000-01-03 | 100.000000 | 100.000000 | 0.700000 | 0.300000 | 100.000000 | 100.000000 |
2000-01-04 | 96.053180 | 107.222966 | 0.724420 | 0.278124 | 99.404116 | 99.404116 |
2000-01-05 | 93.659393 | 105.195824 | 0.725761 | 0.276930 | 97.120322 | 97.106211 |
2000-01-06 | 92.812659 | 100.634511 | 0.718221 | 0.283884 | 95.159214 | 95.228521 |
2000-01-07 | 95.856035 | 88.562668 | 0.686354 | 0.318376 | 93.668025 | 93.987330 |
5 rows × 6 columns
A brief check if the ratios are indeed constant.
(data['Volatility'] * data['VSTOXX'] / data['Dynamic'])[:5]
date 2000-01-03 0.3 2000-01-04 0.3 2000-01-05 0.3 2000-01-06 0.3 2000-01-07 0.3 dtype: float64
(data['Equity'] * data['EUROSTOXX'] / data['Dynamic'])[:5]
date 2000-01-03 0.7 2000-01-04 0.7 2000-01-05 0.7 2000-01-06 0.7 2000-01-07 0.7 dtype: float64
Let us inspect the performance of the strategy.
data[['EUROSTOXX', 'Dynamic']].plot(figsize=(10, 5))
<matplotlib.axes.AxesSubplot at 0x10af45f10>
Write a Python function which allows for an arbitrary but constant ratio to be invested in the VSTOXX index and which returns net performance values (in percent) for the constant proportion VSTOXX strategy.
Add on: find the ratio to be invested in the VSTOXX that gives the maximum performance.
Using standard Python functionality and pandas, the code that follows reads intraday, high-frequency data from a Web source, plots it and resamples it.
url = 'http://hopey.netfonds.no/posdump.php?'
url += 'date=%s%s%s&paper=AAPL.O&csv_format=csv' % ('2014', '02', '19')
# you may have to adjust the date since only recent dates are available
urlretrieve(url, 'aapl.csv')
('aapl.csv', <httplib.HTTPMessage instance at 0x10bc1a7e8>)
AAPL = pd.read_csv('aapl.csv', index_col=0, header=0, parse_dates=True)
AAPL.info()
<class 'pandas.core.frame.DataFrame'> DatetimeIndex: 14649 entries, 2014-02-19 01:17:18 to 2014-02-19 22:16:26 Data columns (total 6 columns): bid 14649 non-null float64 bid_depth 14649 non-null int64 bid_depth_total 14649 non-null int64 offer 14649 non-null float64 offer_depth 14649 non-null int64 offer_depth_total 14649 non-null int64 dtypes: float64(2), int64(4)
The intraday evolution of the Apple stock price.
AAPL['bid'].plot()
<matplotlib.axes.AxesSubplot at 0x10bd2d950>
AAPL = AAPL[AAPL.index > dt.datetime(2014, 2, 19, 10, 0, 0)]
# only data later than 10am at that day
A resampling of the data is easily accomplished with pandas.
# this resamples the record frequency to 5 minutes, using mean as aggregation rule
AAPL_5min = AAPL.resample(rule='5min', how='mean').fillna(method='ffill')
AAPL_5min.head()
bid | bid_depth | bid_depth_total | offer | offer_depth | offer_depth_total | |
---|---|---|---|---|---|---|
time | ||||||
2014-02-19 10:00:00 | 545.050000 | 100.000000 | 100.000000 | 545.993333 | 241.666667 | 241.666667 |
2014-02-19 10:05:00 | 545.423462 | 142.307692 | 142.307692 | 546.255769 | 107.692308 | 107.692308 |
2014-02-19 10:10:00 | 545.600270 | 127.027027 | 127.027027 | 546.164324 | 100.000000 | 100.000000 |
2014-02-19 10:15:00 | 545.654528 | 183.018868 | 183.018868 | 546.149811 | 100.000000 | 100.000000 |
2014-02-19 10:20:00 | 545.777556 | 173.333333 | 173.333333 | 546.155778 | 100.000000 | 100.000000 |
5 rows × 6 columns
Let's have a graphical look at the new data set.
AAPL_5min['bid'].plot()
<matplotlib.axes.AxesSubplot at 0x10bc05390>
With pandas you can easily apply custom functions to time series data.
AAPL_5min['bid'].apply(lambda x: 2 * 540 - x).plot()
# this mirrors the stock price development at
<matplotlib.axes.AxesSubplot at 0x10ccc0490>
10 years ago, Python was considered exotic in the analytics space – at best. Languages/packages like R and Matlab dominated the scene. Today, Python has become a major force in financial analytics & visualization due to a number of characteristics:
One of the easiest ways to deploy Python today across a whole organization with a heterogenous IT infrastructure is via Wakari, Continuum's Web-/Browser- and Python-based Data Analytics environment. It is availble both as a cloud as well as an enterprise solution for in-house deployment.
The Python Quants – the company Web site
Dr. Yves J. Hilpisch – my personal Web site
Derivatives Analytics with Python – my new book
Read an Excerpt and Order the Book
Contact Us
# Autosave Function for IPyton Notebook
def autosave(interval=3):
"""Autosave the notebook every interval (in minutes)"""
from IPython.core.display import Javascript
interval *= 60 * 1000 # JS wants intervals in miliseconds
tpl = 'setInterval ( "IPython.notebook.save_notebook()", %i );'
return Javascript(tpl % interval)
autosave()
<IPython.core.display.Javascript at 0x10cf93e90>