

follow us: twitter.com/JAXlondon JAXlondon JAX London

www.jaxlondon.com

• 60+ sessions • Keynotes • Expo Area •

• Hands-on workshops • Community Events •

15%

off with

discount code

JL13SD

Early Bird discount ends 15th August - £649 all access!

October 28th – 30th 2013|Park Plaza Victoria, London

featuring

the best of Java tech

13/20134

Dear Readers,

Our ‘Python Starter Kit’ is prepared for you to start your
adventure with Python Programming. We did our best to

collect the best authors, who will show you how to start.

For the very beginning we have tutorials, which will teach you
step by step how to begin. In Python Guide for Beginners by
Mohit Saxena you will be introduced to Python as a programming
language, Sotaya Yakubuin his Starting with Python will show you
the best basics to good start with Python. All you have to know to
open yourself possibilities in Django you will find in the article of
Alberto Paro : Beginning with Django.

When you catch some basics you will be ready for a bit more
advance subjects that our authors prepared for you learn how to
make Better Django Unit Testing Using Factories instead of Fixtures
with Anton Sipos. Another thing that is good to know is a library in
the article Python Fabric by Renato Candido. W. Matthew Wilson
will introduce you to Python logging module, after that read some
about Web Security in Python and Django by Steve Lott, interesting
and pleasant tutorial about why safety is so important.

You will know more and more about Python, and thanks to
George Psarksis and his Building a console 2-player chess board
game in Python you will be able to learn Python Object-Oriented
Concepts Interacting with user input on the command line. If you
want to know how to write an app you should read Write a Web
App and Learn Python by Adam Nelson.

For those who feel they want more, we have excellent article
by Yves J. Hilpisch : Efficient Data and Financial Analytics with
Python, which will make you be able to face today’s data analytics
challenges.

Our tutorial: Test-Driven Development With Python by Josh
VanderLinden will guide you through mysteries of testing, with
such great commented and done guideline you will really enjoy
learning. For the end get to know what Python Interetors are and
how Saad Bin Akhlaq is showing you its secrets.

I hope you will enjoy learning with us! For more take a look at our
Python Programming issue, and enjoy what Software Developer’s
Journal prepared for you!

For staying in touch follow us on twitter and like us on facebook.

Karolina Rekun
& the SDJ Team

Editor’s Note

team

Editor in Chief: Karolina Rekun
karolina.rekun@software.com.pl

Special thanks to our Beta testers and
Proofreaders who helped us with this
issue. Our magazine would not exist
without your assistance and expertise.

Publisher: Paweł Marciniak

Managing Director: Ewa Dudzic

Production Director: Andrzej Kuca
andrzej.kuca@sdjournal.org

Art. Director: Ireneusz Pogroszewski
ireneusz.pogroszewski@sdjournal.org

DTP: Ireneusz Pogroszewski

Marketing Director: Ewa Dudzic

Publisher: Hakin9 Media SK
02-676 Warsaw, Poland
Postepu 17D
Phone: 1 917 338 3631
http://en.sdjournal.org/

Whilst every effort has been made
to ensure the highest quality of
the magazine, the editors make
no warranty, expressed or implied,
concerning the results of the content’s
usage. All trademarks presented in the
magazine were used for informative
purposes only.

All rights to trademarks presented
in the magazine are reserved by the
companies which own them.

DISCLAIMER!
The techniques described in
our magazine may be used
in private, local networks
only. The editors hold no
responsibility for the misuse
of the techniques presented or
any data loss.

https://twitter.com/SDJ_EN
https://www.facebook.com/pages/Software-Developers-Journal/191311144245594?fref=ts
mailto:mailto:karolina.rekun%40software.com.pl?subject=
mailto:mailto:andrzej.kuca%40sdjournal.org?subject=
mailto:mailto:ireneusz.pogroszewski%40sdjournal.org?subject=

en.sdjournal.org 5

CoNTENTS

06 Python: A Guide for Beginners
MOHIt SAxEnA
Python is an easy and powerful programming language.
It has highly efficient data structures with object-oriented
programming approach. Its neat syntax and dynamic typing
makes it more efficient. It is the best programming language
for rapid application development for many platforms.

10 Starting Python Programming and
the Use of Docstring and dir()
SOtAyA yAKuBu
Python is an interpreted language and features dynamic
system with an automatic memory management. It can
be used as a full fledged language, or integrated as a
scripting language in another such as C, Java e.t.c The
language itself is not limited to a specific programming
paradigm, different styles of coding can be used in this
language such as; Imperative, Object-oriented, functional
and procedural styles.

16 Beginning with Django
AlBERtO PARO
What are the success keys for a web framework? Is it easy to
use? Is it easy to deploy? Does it provide user satisfaction?
Django framework is more that these answers because, in
my opinion, is one of the few framework that is able to hit
its goal: it “makes it easier to build better Web apps more
quickly and with less code”.

24 Better Django Unit Testing Using
Factories Instead of Fixtures
AntOn SIPOS
Unit testing is the key practice for improving software
quality. Even though most of us agree with this in principle,
all too often when things get difficult programmers end up
skipping writing tests. We end up being pragmatic rather
than principled, especially when deadlines are involved.

30 Using Python Fabric to Automate
GNU/Linux Server Configuration
Tasks
REnAtO CAnDIDO
Fabric is a Python library and command-line tool for
automating tasks of application deployment and system
administration via SSH. It provides tools for executing
local and remote shell commands and for transferring files
through SSH and SFTP, respectively.

36 The Python Logging Module is Much
Better Than Print Statements
W. MAttHEW WIlSO
So I’m forcing myself to use logging in every script I do,
no matter how trivial it is, so I can getcomfortable with
the python standard library logging module. So far, I’m
really happy with it.I’ll start with a script that uses print
statements and revise it a few times and show off how
logging is a better solution.

40 Python, Web Security and Django
StEvE lOtt
Two of the pillars of security are Authentication (who
are you?) and Authorization (what are you allowed to
do?). Best security practice is never to store a password
that can be easily recovered. A hash can be undone

eventually, but encryption means all passwords are
exposed once the encryption key is available.

46 Building a Console 2-player Chess
Board Game in Python
GEORGE PSARAKIS
Python is a very powerful language particularly for writing
server-side backend scripts, although one can also use it
for web development tasks through the Django framework
and it is gaining popularity in that field as well. A very
thorough and complete documentation, the huge variety
of libraries and open-source projects – easily installed
with the package managers and the huge knowledge
base in Q&A sites like StackOverflow and mailing lists are
among the main characteristics to which the widespread
use of Python can be attributed to.

52 Write a Web App and Learn Python
Background and Primer for Tackling
the Django Tutorial
ADAM nElSOn
A ‘framework’ is a set of tools and libraries that facilitates
the development of a certain type of application.
Web frameworks facilitate the development of web
applications by allowing languages like Python or Ruby
to take advantage of standard methods to complete tasks
like interacting with HTTP payloads, or tracking users
throughout a site, or constructing basic HTML pages.
Leveraging this scaffolding, a developer can focus on
creating a web application instead of doing a deep dive
on HTTP internals and other lower-level technologies.

56 Efficient Data and Financial Analytics
with Python
DR. yvES J. HIlPISCH
Decision makers and analysts being faced with such an
environment cannot rely anymore on traditional approaches
to process data or to make decisions. In the past, these
areas where characterized by highly structured processes
which were repeated regularly or when needed.

66 Test-Driven Development With
Python
JOSH vAnDERlInDEn
Software development is easier and more accessible now
than it ever has been. Unfortunately, rapid development
speeds offered by modern programming languages make
it easy for us as programmers to overlook the possible
error conditions in our code and move on to other parts
of a project. Automated tests can provide us with a level
of certainty that our code really does handle various
situations the way we expect it to, and these tests can
save hundreds upon thousands of man-hours over the
course of a project’s development lifecycle.

84 Python Iterators, Iterables, and the
Itertool Module
SAAD BIn AKHlAq
Python makes a distinction between iterables and iterators,
it is quite essential to know the difference between them.
Iterators are stateful objects they know how far through their
sequence they are. Once they reach their thats is it. Iterables
are able to create iterators on demand. Itertool modules
includes a set of functions for working with iterable datasets.

13/20136

Python: A Guide for
Beginners

Python is an easy and powerful programming language.
It has highly efficient data structures with object-oriented
programming approach. Its neat syntax and dynamic typing
makes it more efficient. It is the best programming language for
rapid application development for many platforms.

P ython interpreter and extensive standard library
are available for free in the source code. Python
interpreter is easy to extend. It comes with new

functions, and its data types can be easily implemented
in C/C++. Python is also appropriated as an extension
language for customizable applications.

Python was written by
a Dutch computer pro-
grammer Guido van Ros-
sum (who now works with
Google). Python is an ob-
ject-oriented programming
language, which is being
widely used for various
software and application
development. It provides
strong support to get eas-
ily integrated with various
other tools and languages.
It has a rich set of libraries

that can be easily learned by beginners as well. Many Py-
thon developers believe that Python provides high-qual-
ity of software development, support and maintenance.

Here are some advantages of using Python as a cod-
ing language:

• Python comes with simple syntax, which allows you
to use a few keywords to write code in Python.

• Python is an object oriented language thus there is
everything is object in Python.

• Python has advanced object oriented design ele-
ments which allow programmers to write huge codes.

Figure 1. Python Logo

• Python has inclusive standard library which helps
programmers write almost any kind of code.

• It has industry standard encryption to 3D graphics.
• It can be easily installed in a variety of environ-

ments such as desktop, cloud server or handheld
devices.

In this article you will learn about the basics of Python
such as system requirement, installation, basic math-
ematical operations and some examples of writing
codes in Python. This article is intended to help you
learn to code in Python (Figure 2).

If you are new to computers, you need to first under-
stand and learn about how to start operating, and how
the machine sees your program. For those who already
know computer operations and operating systems can
directly jump into coding. But before you start cod-
ing, you need to make sure that you are well equipped
with an editor. It will help you to get familiarized your-
self with the basics of Python coding. Also, you need
to understand basics of writing, executing and running
a program. Executing a Python program lets you know
whether the Python interpreter converts into the code
that the computer can read and take action on it.

System requirement for Python
Operating systems required for Python are Mac OS X
10.8, Mac OS X 10.7, Mac OS X 10.6, Unix systems
and services. Windows doesn’t require Python natively.
You don’t need to pre-install a version of Python. The
CPython has compiled Windows installers with each
new release of Python (Figure 3).

en.sdjournal.org 7

PyThoN: A GUIDE FoR BEGINNERS

Getting started with Python
As Python is an interpreted language, therefore pro-
grammers don’t need a compiler. Python is pre-installed
in Linux and Mac operating systems; you just need to
run it. Type “Python3” to get started with Python. If you
need interpreter, you can simply download it from www.
python .org/download/ (Figure 4).

Python 3 is a user-friendly version you can easily get
started with it. Once you have downloaded the interpret-
er, go through the instructions carefully to install it. You
also need to download a code editor to get started with
coding. For Windows users, Notepad can be a good op-
tion to write code. For Linux users every single little text
editor is a syntax-highlighting code editor. Mac users
can use Text Wrangler to write code in Python.

About the Author
The writers’ team at Wide Vision Technologies is well
versed at basic computer operations and writing for web
audience. The team has been writing articles, blogs and

Figure 3. System requirement for Python

Figure 2. How the computer sees Python

Figure 4. Python and other similar languages

13/20138

website content since the past five years. Each team mem-
ber has at least two years of experience in writing for web.

Writing the first program
To start writing your first program in Python, you need to
open the text editor. Write:

#print(“Hello, How are you?”)#.

After this, save the file, you can name it as “hello.
py.” To open Windows, click Start button, in Run op-
tion, type “cmd” in the prompt. Then you need to navi-
gate to the index where you have saved your first pro-
gram and type “python hello.py” (without quotes). With
this effort, you can find out whether your Python is in-
stalled and working properly or not. You can now start
writing with more advanced codes (Listing 1).

Arithmetic operators
Python also has arithmetic operators such as addition,
subtraction, multiplication, and division. You can eas-
ily use these standard operators with numbers to write
arithmetic codes.

operators with Strings
Python also supports strings with the addition operator,
for example:

helloworld = “hello” + “ “ + “world”

Python supports multiplication strings to structure a
string with a repeat sequence, for example:

lotsofhellos = “hello” * 10

operators with Lists
In Python you can join lists with addition operators, for
example:

even_numbers = [4,6,8]

odd_numbers = [3,5,7]

all_numbers = odd_numbers + even_numbers

Python supports creating new lists with repeat-
ing sequence with strings in multiplication operator,
for example:

print [1,2,3] * 3

Now, it’s time to try a simple mathematical program in
Python. Here are some simple basic commands of Py-
thon and how you can use them.

Table 1. Basic mathematical operations and examples

Command name Example Output
+ Addition 4+4 8

- Subtraction 8-2 6

* Multiplication 4*3 12

/ Division 18/2 9

% Remainder 19%3 5

** Exponent 2**4 16

The simple mathematical operations can be applied
easily in Python as well. Here is the list of names what
you call in Python:

• Parentheses ()
• Exponents **
• Multiplication *
• Division \
• Remainder %
• Addition +
• Subtraction -

Here are some simple and try-it-yourself examples of
mathematical codes in Python:

>>> 1 + 2 * 3

7

>>> (1 + 2) * 3

9

Listing 1. Simple code example of Python

 1: // def insert_powers(numbers, n)

 2: // powers = (n, n*n, n*n*n)

 3: // numbers [n] = powers

 4: // return powers

 5:

 6: static PyObject *

 7: insert_powersl(PyObject *self, PyObject *args)

 8: {

 9: PyObject *numbers:

10: int n:

11:

12 if (!PyArg_ParseTuple(args, ‘oi” , &numbers, &n)) {

13: return NULL;

14: }

16: PyObject *powers = Py_BuildValue(“(iii)” , n,

n*n, n*n*n);

17:

18: //Equivalent to Python: numbers[n] = powers

19: if (PySequence_SetItem(numbers, n, powers) < 0) {

2o: return NULL;

21: }

22:

23: return powers;

24: }

en.sdjournal.org

In the above example, the machine first calculates 2
* 3 and then adds 1 to it. The reason is multiplication
is on the high priority (3) and addition is at the below
priority (4). In other one, the machine first calculates 1
+ 2 and then multiplies it by number 3. The reason is
that parentheses are on high priority and addition is on
the low priority than that. In Python the math is being
calculated from left to right, if not put in parentheses.
It is important to note that innermost parentheses are
being calculated first. For example:

>>> 4 – 40 – 3

-39

>>> 4 – (40 – 3)

-33

In this example, first 4-40 is evaluated first and then
-3. In the other one, first 40-3 is evaluated and then it
is subtracted from the number 4.

Python is one of the high-level languages available
these days. It is one of the most easy to learn and use
languages, and at the same time it is very popular as
well. It is being widely used by many professional pro-
grammers to create dynamic and extensive codes.
Google, Industrial Light and Magic, The New York Stock
Exchange, and other such big giants use Python. If you
have your own computer you can download and install
it easily. Python is free; you can start coding in Python
now!

For more information visit: www.widevisiontechnolo-
gies.com/.

MohIT SAxENA

References
[1] https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source

=images&cd=&cad=rja&docid=Uu27A3md38FOsM&tbnid=
ygia7G_YS151YM:&ved=0CAMQjhw&url=http%3A%2F%2Fa
freemobile.blogspot.com%2F2011%2F07%2Fdownload-py-
thon-for-symbian.html&ei=FoLuUc2eFc6GrAfsm4GYDA&bv
m=bv.49478099,d.aGc&psig=AFQjCNERzUgwmKhr62FF5j_
pKicDzKgl5Q&ust=1374671724203993

[2] http://www.itmaybeahack.com/homepage/books/nonprog/
html/_images/p1c5-fig3.png

[3] http://freegee.sourceforge.net/FG_EN/freegee-overview800.png
[4] http://www.google.com/imgres?start=361&hl=en&biw=1366&bih

=667&sout=0&tbm=isch&tbnid=qwB5Xw9W8VEtWM
:&imgrefurl=http://quintagroup.com/services/python/
applications&docid=sKv9o-jtWEP8pM&imgurl=http://
quintagroup.com/services/python/python-applications.
png&w=377&h=205&ei=wYPuUbuWDc-ciQeTtYGgCw&zoom=1
&ved=1t:3588,r:77,s:300,i:235&iact=rc&page=17&tbnh=164&tbn
w=301&ndsp=22&tx=223&ty=97

[5] https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcRNM
0MYpdUcHbhV5hlRKv8nkEnsAKwNNukK9-1FhyFfbsoh07ra4g

http://www.widevisiontechnologies.com
http://www.widevisiontechnologies.com
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Uu27A3md38FOsM&tbnid=ygia7G_YS151YM:&ved=0CAMQjhw&url=http%3A%2F%2Fafreemobile.blogspot.com%2F2011%2F07%2Fdownload-python-for-symbian.html&ei=FoLuUc2eFc6GrAfsm4GYDA&bvm=bv.49478099,d.aGc&psig=AFQjCNERzUgwmKhr62FF5j_pKicDzKgl5Q&ust=1374671724203993
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Uu27A3md38FOsM&tbnid=ygia7G_YS151YM:&ved=0CAMQjhw&url=http%3A%2F%2Fafreemobile.blogspot.com%2F2011%2F07%2Fdownload-python-for-symbian.html&ei=FoLuUc2eFc6GrAfsm4GYDA&bvm=bv.49478099,d.aGc&psig=AFQjCNERzUgwmKhr62FF5j_pKicDzKgl5Q&ust=1374671724203993
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Uu27A3md38FOsM&tbnid=ygia7G_YS151YM:&ved=0CAMQjhw&url=http%3A%2F%2Fafreemobile.blogspot.com%2F2011%2F07%2Fdownload-python-for-symbian.html&ei=FoLuUc2eFc6GrAfsm4GYDA&bvm=bv.49478099,d.aGc&psig=AFQjCNERzUgwmKhr62FF5j_pKicDzKgl5Q&ust=1374671724203993
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Uu27A3md38FOsM&tbnid=ygia7G_YS151YM:&ved=0CAMQjhw&url=http%3A%2F%2Fafreemobile.blogspot.com%2F2011%2F07%2Fdownload-python-for-symbian.html&ei=FoLuUc2eFc6GrAfsm4GYDA&bvm=bv.49478099,d.aGc&psig=AFQjCNERzUgwmKhr62FF5j_pKicDzKgl5Q&ust=1374671724203993
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Uu27A3md38FOsM&tbnid=ygia7G_YS151YM:&ved=0CAMQjhw&url=http%3A%2F%2Fafreemobile.blogspot.com%2F2011%2F07%2Fdownload-python-for-symbian.html&ei=FoLuUc2eFc6GrAfsm4GYDA&bvm=bv.49478099,d.aGc&psig=AFQjCNERzUgwmKhr62FF5j_pKicDzKgl5Q&ust=1374671724203993
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Uu27A3md38FOsM&tbnid=ygia7G_YS151YM:&ved=0CAMQjhw&url=http%3A%2F%2Fafreemobile.blogspot.com%2F2011%2F07%2Fdownload-python-for-symbian.html&ei=FoLuUc2eFc6GrAfsm4GYDA&bvm=bv.49478099,d.aGc&psig=AFQjCNERzUgwmKhr62FF5j_pKicDzKgl5Q&ust=1374671724203993
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Uu27A3md38FOsM&tbnid=ygia7G_YS151YM:&ved=0CAMQjhw&url=http%3A%2F%2Fafreemobile.blogspot.com%2F2011%2F07%2Fdownload-python-for-symbian.html&ei=FoLuUc2eFc6GrAfsm4GYDA&bvm=bv.49478099,d.aGc&psig=AFQjCNERzUgwmKhr62FF5j_pKicDzKgl5Q&ust=1374671724203993
http://www.itmaybeahack.com/homepage/books/nonprog/html/_images/p1c5-fig3.png
http://www.itmaybeahack.com/homepage/books/nonprog/html/_images/p1c5-fig3.png
http://freegee.sourceforge.net/FG_EN/freegee-overview800.png
http://www.google.com/imgres?start=361&hl=en&biw=1366&bih=667&sout=0&tbm=isch&tbnid=qwB5Xw9W8VEtWM:&imgrefurl=http://quintagroup.com/services/python/applications&docid=sKv9o-jtWEP8pM&imgurl=http://quintagroup.com/services/python/python-applications.png&w=377&h=205&ei=wYPuUbuWDc-ciQeTtYGgCw&zoom=1&ved=1t:3588,r:77,s:300,i:235&iact=rc&page=17&tbnh=164&tbnw=301&ndsp=22&tx=223&ty=97
http://www.google.com/imgres?start=361&hl=en&biw=1366&bih=667&sout=0&tbm=isch&tbnid=qwB5Xw9W8VEtWM:&imgrefurl=http://quintagroup.com/services/python/applications&docid=sKv9o-jtWEP8pM&imgurl=http://quintagroup.com/services/python/python-applications.png&w=377&h=205&ei=wYPuUbuWDc-ciQeTtYGgCw&zoom=1&ved=1t:3588,r:77,s:300,i:235&iact=rc&page=17&tbnh=164&tbnw=301&ndsp=22&tx=223&ty=97
http://www.google.com/imgres?start=361&hl=en&biw=1366&bih=667&sout=0&tbm=isch&tbnid=qwB5Xw9W8VEtWM:&imgrefurl=http://quintagroup.com/services/python/applications&docid=sKv9o-jtWEP8pM&imgurl=http://quintagroup.com/services/python/python-applications.png&w=377&h=205&ei=wYPuUbuWDc-ciQeTtYGgCw&zoom=1&ved=1t:3588,r:77,s:300,i:235&iact=rc&page=17&tbnh=164&tbnw=301&ndsp=22&tx=223&ty=97
http://www.google.com/imgres?start=361&hl=en&biw=1366&bih=667&sout=0&tbm=isch&tbnid=qwB5Xw9W8VEtWM:&imgrefurl=http://quintagroup.com/services/python/applications&docid=sKv9o-jtWEP8pM&imgurl=http://quintagroup.com/services/python/python-applications.png&w=377&h=205&ei=wYPuUbuWDc-ciQeTtYGgCw&zoom=1&ved=1t:3588,r:77,s:300,i:235&iact=rc&page=17&tbnh=164&tbnw=301&ndsp=22&tx=223&ty=97
http://www.google.com/imgres?start=361&hl=en&biw=1366&bih=667&sout=0&tbm=isch&tbnid=qwB5Xw9W8VEtWM:&imgrefurl=http://quintagroup.com/services/python/applications&docid=sKv9o-jtWEP8pM&imgurl=http://quintagroup.com/services/python/python-applications.png&w=377&h=205&ei=wYPuUbuWDc-ciQeTtYGgCw&zoom=1&ved=1t:3588,r:77,s:300,i:235&iact=rc&page=17&tbnh=164&tbnw=301&ndsp=22&tx=223&ty=97
http://www.google.com/imgres?start=361&hl=en&biw=1366&bih=667&sout=0&tbm=isch&tbnid=qwB5Xw9W8VEtWM:&imgrefurl=http://quintagroup.com/services/python/applications&docid=sKv9o-jtWEP8pM&imgurl=http://quintagroup.com/services/python/python-applications.png&w=377&h=205&ei=wYPuUbuWDc-ciQeTtYGgCw&zoom=1&ved=1t:3588,r:77,s:300,i:235&iact=rc&page=17&tbnh=164&tbnw=301&ndsp=22&tx=223&ty=97
http://www.google.com/imgres?start=361&hl=en&biw=1366&bih=667&sout=0&tbm=isch&tbnid=qwB5Xw9W8VEtWM:&imgrefurl=http://quintagroup.com/services/python/applications&docid=sKv9o-jtWEP8pM&imgurl=http://quintagroup.com/services/python/python-applications.png&w=377&h=205&ei=wYPuUbuWDc-ciQeTtYGgCw&zoom=1&ved=1t:3588,r:77,s:300,i:235&iact=rc&page=17&tbnh=164&tbnw=301&ndsp=22&tx=223&ty=97
http://www.google.com/imgres?start=361&hl=en&biw=1366&bih=667&sout=0&tbm=isch&tbnid=qwB5Xw9W8VEtWM:&imgrefurl=http://quintagroup.com/services/python/applications&docid=sKv9o-jtWEP8pM&imgurl=http://quintagroup.com/services/python/python-applications.png&w=377&h=205&ei=wYPuUbuWDc-ciQeTtYGgCw&zoom=1&ved=1t:3588,r:77,s:300,i:235&iact=rc&page=17&tbnh=164&tbnw=301&ndsp=22&tx=223&ty=97
https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcRNM0MYpdUcHbhV5hlRKv8nkEnsAKwNNukK9-1FhyFfbsoh07ra4g
https://encrypted-tbn2.gstatic.com/images?q=tbn:ANd9GcRNM0MYpdUcHbhV5hlRKv8nkEnsAKwNNukK9-1FhyFfbsoh07ra4g

13/201310

Starting Python
Programming and the Use
of Docstring and dir()
In this article, I will be talking about Python as a general-
purpose programming language which is designed for easy
integration, readability and most of all the ease in expressing
concepts in a few lines of code. Also we will be doing a lot of
practice, on the basics of python programming, after which we
will take a look at docstring and dir() and how they can be used
to learn about new API’s.

Python is an interpreted language and features
dynamic system with an automatic memory
management. It can be used as a full fledged

language, or integrated as a scripting language in an-
other such as C, Java e.t.c The language itself is not
limited to a specific programming paradigm, different
styles of coding can be used in this language such as;
Imperative, Object-oriented, functional and procedural
styles. There are several areas in which python is used,
areas such as:

• Mathematics,
• scientific research,
• system administration,
• desktop application development with Tkinter e.t.c,
• web application development in frameworks such

as Django,
• and recently Mobile application development in

Kivy framework, scripting layer for android, python
for android.

Python Interpreter
As you know by now python is an interpreted language,
and it has its interpreter which runs on multiple plat-
forms such as Windows, Linux, Mac OSX, other UNIX
distributions and SL4A which contains a python inter-
preter that runs on Android. Linux and Mac OSX come
with python 2.7 preinstalled in them, if you are using
Windows you can download IDLE (Python IDE) which

has lots of features aside the interpreter. In this tutorial,
we will be using the interactive programming environ-
ment which can be accessed through the terminal in
Linux, other Unix distributions and also IDLE.

Getting Started
Enough chit chat, if you are using windows I presume
you have installed IDLE, once you open it, it will give
you an interactive environment with the python prompt
>>> instantly. For Linux/Unix users, open the terminal
and type

$ python

at your shell prompt, press enter and you should have
the python prompt >>> Note. In defining functions or
blocks with more than one line, the interpreter provides
…. which means a continuation.

Number, Variables and operators
Let’s play with variables, numbers and arithmetic op-
erators. Calculations in python have been interest-
ing as there are no special features or syntax need-
ed for calculations; simple addition, subtraction and
multiplication are straight forward as if you are using
a calculator.

First of all let’s talk about variables; variables are con-
tainers/memory locations that can store known or un-
known quantities. This allows us to manipulate quanti-

en.sdjournal.org

ties without having to explicitly define them every time
they are needed. Note that python is not a strong typed
language, variable types are determined by their con-
tents not defined. e.g:

num = 10 – means that variable ‘num’ is an integer

num = ‘Name’ – means variable ‘num’ is a string.

Having our python prompt, we are going to do some
calculations and store our results in variables.

>>> a = 2 – variable ‘a’ stores 2

>>> b = 3 – variable ‘b’ stores 3

>>> sum = a+b – variable ‘sum’ stores value of ‘a+b’

Now “sum” contains the sum of “a” and “b”, how do we
know if this actually worked, well lets print the value of
“sum” and see:

>>> print sum

5 – result

>>> sub = 50 -20

>>> print sub

30

Yes, it’s as easy as that, unlike C, Java etc. You do not
need to compile your code in order to see the output,
this is an interpreted language and when using the in-
teractive programming environment, we get outputs
immediately. Let’s do some multiplication.

>>> product = 3*6

>>> print product

18

Division and Modulo:

>>> div = 5/2

>>> print div

2

I know you want to ask a question, how did 5/2 be-
comes 2 right! Yes its 2 because our answer has been
rounded down to the nearest integer. If we want our
answer in float we can simply divide like Listing 1.

Now if we want to find the square of a number how
are we going to do that, unlike other languages python’s
method of calculating square is not ^ but **. Let’s try it
and see:

>>> square = 5**2

>>> print square

25

You can try as much examples as you want.

http://wwww.uat.edu

13/201312

Importing Modules
Now, what if we want to calculate the square root of
a number? Unfortunately square root is not part of
the python standard library (built in functions can be
found here http://docs.python.org/2/library/functions.
html#raw%5Finput) but fortunately enough there are
lots of tools provided in python and one of those is the
math module.

A module is a file that contains variable declarations,
function implementations, classes etc. And we can
make use of this functions and variables by importing
the module into our environment. Let’s get to practice;
this is how you import a module to your environment

>>> import math

And now we have imported that module with all its
tools, somewhere in it, is the square root function that
we can call, using:

>>> math.sqrt(25)

 5

You see that we used math.sqrt() what if we just want
to use sqrt(), well there is a way, we import sqrt this
way in Listing 2.

Strings and Input
We can equally store strings in variables:

>>> name = “Jane Doe”

>>> print name

‘Jane Doe’

Also we can concatenate strings together by the use
of the + operator like this:

>>> print “Jane” + “ ” +”Doe”

‘Jane Doe’

In some cases we do not want to just hard code data
into our program, but we want it to be supplied by the
user. In this case we can use raw _ input():

>>> yourName = raw_input(‘Enter name: ’)

Enter name: jane

>>> print yourName

jane

Note: there is another way of taking user defined in-
puts using the input() but I don’t advice using it now un-
til you really know what you are doing, the fact is what-
ever you pass to input() it gets evaluated, if you want
for instance a string ‘3’ when you pass it to input() it
gets evaluated and converted to an integer and that can
cause a whole lot of trouble. So just avoid it.

Enough with the basics, let’s get down to some data
structures.

Lists
Lists are very similar to arrays and they can store ele-
ments of any type and contain as much elements as
you want. Let’s take a look at declarations and storage
of elements in a list:

>>> myList = []

This automatically declares a list for you, and you can
populate it with elements using a method provided by
the list object “append” see Listing 3. And can also
print elements in a specific location like this:

>>> print myList[0]

1

You can learn more about other list functions here
http://docs.python.org/2/tutorial/datastructures.html.

Condition and Iteration
Conditions are important aspects of programming, even
in real life we use condition everyday i.e. I want to buy
milk and I have only 20 bucks, now I will go through
each shop and check if the milk is less or equal to the
amount I have, I buy it else I move to the next shop. The
same applies in programming.

Unlike conditions, iteration is a way of going through
all the elements in a list, sequence or repeating a partic-
ular process over and over again, and this can be very
useful in terms of decision making since we have a lot of
options but we need to go throught each and eveluate

Listing 1. Division and modular

>>> div = 5/2.0

>>>print div
2.5
>>> mod = 10 % 2
>>> print mod
0

Listing 2. Importing individual functions

>>> from math import sqrt

>>> root = sqrt(36)
>>> print root
6
>>> from math import pow
>>> pow(5, 2)
25

http://docs.python.org/2/library/functions.html#raw%5Finput
http://docs.python.org/2/library/functions.html#raw%5Finput
http://docs.python.org/2/tutorial/datastructures.html

en.sdjournal.org 13

STARTING PyThoN PRoGRAMMING

to find the best. In this document we will make use of for
loop; however there are other methods of iteration such
as while loop (Listing 4).

Now this is a bit new to some, what was done here
is, we go through each element in “goods” list using for
loop and the variable “I” assume each of the elements
one after the other until there are no more elements,
evaluating at each stage.

Functions
Functions are a way to divide our code into a modular
structure, to enable reuse, readability and save time. If
there is a particular process that is written over and over
again, this can be a bit bogus and inefficient, but when
we define functions, we can easily call does whenever
its needed.

I will show you how a function a written:

>>> def function(args):

… print args

This is a simple function the prints whatever is passed
to it and you can test it by runing this:

>>> function(‘name’)

name

It prints out what you passed to it, also we can return
values from a function, take for instance, let’s write a
function that takes in two numbers, add them together
and returns the value:

>>> def add(a, b):

… return a+b

And this is it, we can call add() with two arguments:

>>> add(2, 3)

>>>

Exactly nothing happened, because we did not print
the returned value. Now let’s store what is returned to
a variable and print it out.

>>> sum = add(2, 4)

>>> print sum

6

Comments
Commenting code is a good practice for programmers,
it helps whoever reading you code know what you were
doing and sometimes its helpful when you come back
to modify you code or update. Comments in python are

Listing 3. Adding elements to a list

>>> myList.append(1)

>>> myList.append(2)
>>> myList.append(3)
>>> print myList
[1, 2, 3]

Listing 4. Iterating through list elements and checking for a
condition

>>> goods = [‘milk’, ‘steak’, ‘Sugar’]

>>> for I in goods:
…. If I == ‘milk’:
…. print i
…. else:
 Print ‘Not milk’
milk
Not milk
Not milk

Listing 5. Format of Docstring

“””

Source defining the animal class, containing one
method and another separate
method

“””
class Animal(object):
 def talk(self):
 “”” Method that shows how animals

talk “””
def mate(animal):
 “”” Method for mating animals ”””

Listing 6. Using help() to learn more about a function usage and
definition (printing docstring)

>>> import math

>>> help(math.pow)
Help on built-in function pow in module math:
pow(...)
 pow(x,y)
 Return x**y (x to the power of y). – is

the docstring

13/201314

striped out during parsing, and we comment in python
by putting # before the line we want to be commented.
Like this:

>>>#this is a comment

>>>

Does actually nothing because the interpreter knows
once it encounters # everything in that line after it will
be ignored.

Docstring
Now that you have learned how to use variables, im-
port modules, operators, conditional statements, itera-
tor, function and lists. Let’s introduce something called
Docstring.

Docstring is a string literal that is used to document
codes; usually stating what a particular function is, or
a class, or modules. Unlike comments or other type
of documentations, docstring is not stripped from the
source code during source parsing, but retained and in-
spected together with the source file. This allows us to
completely document our code within the source code
and this is written within three opening and closing
quotes e.g. “””contents “””. Let’s see how this is written.
Example at Listing 5.

Now what if we want to view the docstring of a func-
tion, to learn about what that function does or the us-
age, well we can use the help() function, it prints the
docstring of that function. Let’s see Listing 6.

See that, we learnt a lot about the pow() function by
printing the docstring of pow() using help().

Viewing Functions of a Module(dir())
What if you have several modules at your disposal
but have no idea what is contained in them, and you
are so lazy to go through a bunch of source code,
dir() is a function that can be used to view the func-
tions defined in a module, or the methods applicable
to certain objects.

Listing 7. Use of dir() to learn more about functions and modules

>>> import math

>>> dir(math)
[‘__doc__’, ‘__name__’, ‘acos’, ‘asin’, ‘atan’, ‘atan2’, ‘ceil’, ‘cos’, ‘cosh’, ‘degrees’, ‘e’,

‘exp’, ‘fabs’, ‘floor’, ‘fmod’, ‘frexp’, ‘hypot’, ‘ldexp’, ‘log’, ‘log10’, ‘modf’,
‘pi’, ‘pow’, ‘radians’, ‘sin’, ‘sinh’, ‘sqrt’, ‘tan’, ‘tanh’]

>>>
>>> dir(math.pow)
[‘__call__’, ‘__class__’, ‘__cmp__’, ‘__delattr__’, ‘__doc__’, ‘__getattribute__’, ‘__hash__’,

‘__init__’, ‘__module__’, ‘__name__’, ‘__new__’, ‘__reduce__’, ‘__reduce_ex__’,
‘__repr__’, ‘__self__’, ‘__setattr__’, ‘__str__’]

Let’s try some practice:

>>>lis = []

>>> dir(lis)

[‘append’, ‘count’, ‘extend’, ‘index’, ‘insert’, ‘pop’,

‘remove’, ‘reverse’, ‘sort’]

First we defined a list object, and then passed it to
dir() and it returned all the methods that are applica-
ble to this particular object.

Also the same goes for math module in Listing 7. We
had no idea what functions are contained in math mod-
ule, but importing it into our environment and passing
the module object to dir() reveals all the functions in
the module. The same goes for the functions, like the
pow function contains sub attributes that we viewed us-
ing dir().

Summary
This document is just an introduction to python, it is de-
signed to make you comfortable with the environment
and some concepts, tricks and methods in python pro-
gramming language. This will help you being able to
learn more advanced topics on your own. I advice you
to keep practicing and creating different tasks for your-
self. That is the only way you will become a good Soft-
ware Developer.

SoTAyA yAkUBU
Sotaya Yakubu have been an active contributor to open
source projects, working as a freelance software develop-
er with several companies and individuals such as Mediapriz-
ma kft etc. for the past five years and also involved in develop-
ment of mobile frameworks and research in Artificial Intelli-
gence mainly to develop and improve expert and surveillance
systems. He is also a writer and some works can be found here
plaixes.blogspot.com contact: emeraldlinux@gmail.com.

mailto:emeraldlinux@gmail.com

http://www.ciriscr.com/

13/201316

Beginning
with Django

In this article we’ll see the basis of using Django framework
to build web applications. As a variation of MvC (Model view
Control), we’ll learn how to configure a project, create a Django
App, interact with the ORM (Object Relation Model), the routing
(urls dispachting), the view (the Django “Control” part), the
templates and a taste of the admin interface.

W hat are the success keys for a web frame-
work? Is it easy to use? Is it easy to deploy?
Does it provide user satisfaction? Django

framework is more that these answers because, in my
opinion, is one of the few framework that is able to hit its
goal: it “makes it easier to build better Web apps more
quickly and with less code”. There are a lot of good web
frameworks, but few of them provide all the “batteries
included” that are required to create complex and “cus-
tom” web applications.

Django initially starts an editorial project, at the Law-
rence Journal-World newspaper by Adrian Holovaty
and Simon Willison, with a marked MVC approach. The
complete separation of model, view and templates al-
lows to fast replacement of its components and incre-
ment modularization.

It’s often defined as “batteries included” framework
because it has built-in cache support, authentication,
user pluggable, generic type management, pluggable
middlewares, signals, pagination, syndication feeds,
logging, security enhancements (clickjacking protec-
tion, Cross Site Request Forgery protection, Crypto-
graphic signing) and many others features.

In this article, we’ll cover the main functionalities: we’ll
start setting up an environment and we’ll create a sim-
ple application.

NOTE: The code of this article is available on github
at https://github.com/aparo/mybookstore.

Settings up an Django Environment
When developing with python, a good practice is to cre-
ate a virtual environment in which stores the python it-

self and all the related project libraries. To create a vir-
tual environment, I suggest using the virtualenvwrapper
scripts available at https://pypi.python.org/pypi/virtua-
lenvwrapper for unix/macosx users (or https://pypi.py-
thon.org/pypi/virtualenvwrapper-win for windows). After
installing the virtualenvwrapper, we can create an envi-
ronment sdjournal typing

mkvirtualenv --no-site-packages --clear -p /usr/bin/

python2 sdjournal

This command creates a python virtual environment
called sdjournal with no references to other installed li-
braries (--no-site-packages --clear) and using the py-
thon interpreter 2.x.

Note: django works with both python 2.x and python
3.x versions, but many of the third part applications are
developed using python 2.x (the 2.x version is a safer
version to be used).

In future to access to the virtual environment in shell
is required to activate it:

workon sdjournal

and to move in it:

cdvirtualenv

Now that we have a virtualenv, we can install Django
with pip:

 pip install django

https://github.com/aparo/mybookstore
https://pypi.python.org/pypi/virtualenvwrapper
https://pypi.python.org/pypi/virtualenvwrapper
https://pypi.python.org/pypi/virtualenvwrapper-win for windows
https://pypi.python.org/pypi/virtualenvwrapper-win for windows

en.sdjournal.org 17

BEGINNING WITh DjANGo

It installs django version 2.5.1. A good practice is to
install also packages to manage database changes
(south: http://south.aeracode.org/), to do simple image
manipulation libraries PIL (Pillow: https://pypi.python.
org/pypi/Pillow) and to improve the python command
line (ipython):

 pip install south Pillow ipython

Now the environment and some base libraries are in-
stalled we can create a simple Django project (a
book store): be sure to be in the virtualenv directory
(cdvirtualenv) and type:

 django-admin.py startproject mybookstore

After having installed Django, the django-admin.py
command is available in the virtualenv. It allows exe-
cuting a lot of administrative commands such as proj-
ect management, database management, i18n (trans-
lation) management, …

The syntax is django-admin.py <command>: so the
startproject command creates a stub working struc-
ture with some files such as:

mybookstore/manage.py

mybookstore/mybookstore

mybookstore/mybookstore/__init__.py

mybookstore/mybookstore/settings.py

mybookstore/mybookstore/urls.py

mybookstore/mybookstore/wsgi.py

The manage.py file is similar to django-admin.py, but
local to the project.

The settings.py is the core of all Django settings. As it
contains a big number of options, I’ll point out the more
important ones:

• Set up the database. Django relies on a Data-
base and it must be configured to work. The da-
tabase settings are in DATABASES dictionary.
We’ll use sqlite as database as it is very simple
to configure and it is automatically available in
Python distribution.

DATABASES = {

 ‘default’: {

 ‘ENGINE’: ‘django.db.backends.sqlite3’,

 ‘NAME’: ‘mybookstore.db’,

 ‘USER’: ‘’,

 ‘PASSWORD’: ‘’,

 ‘HOST’: ‘’,

 ‘PORT’: ‘’

 }

}

• Set up media directory, which contains uploaded
media files. The settings is controlled by MEDIA_
ROOT setting: we’ll set it to media directory in the
virtualenv root.

MEDIA_ROOT = os.path.join(os.path.dirname(os.getcwd()),

“media”)

• Set up static directory, which contains static files
such as images, javascript and css. This parame-
ter is controlled by STATIC_ROOT setting: we’ll set
it to “static” directory in the virtualenv root.

STATIC_ROOT = os.path.join(os.path.dirname(os.getcwd()),

“static”)

• Set up installed applications. In INSTALLED_AP-
PS setting, we must put the list of all the application
that we want installed and available in the current
project.

INSTALLED_APPS = (

 ‘django.contrib.auth’,

 ‘django.contrib.contenttypes’,

 ‘django.contrib.sessions’,

 ‘django.contrib.sites’,

 ‘django.contrib.messages’,

 ‘django.contrib.staticfiles’,

 ‘django.contrib.admin’

)

This is the minimal setup required to configure Django.

Creating the first app
aThe Django App is often completely reusable, mainly

because models and views rarely change. The template
part (HTML) of a web application is generally not fully
reusable, because it often need to be themed or cus-
tomized by users, so if generally overwritten with cus-
tom ones.

To create a new application is done with django-ad-
min.py or manage.py command within the project direc-
tory. For example, to create a new bookshop app, you
need to type:

python manage.py startapp bookshop

This command creates a new app/directory called
bookshop containing these files:

• _ _ init _ _ .py: special python file, which converts
a standard directory in a package.

• models.py: the file that will contain the models of
this app. Initially it contains no objects.

• tests.py: the unittest file for this application. This file
contains a test stub to start with.

http://south.aeracode.org/

13/201318

• views.py: this files contains the views that are used
in this application. The standard file is empty.

Generally an app directory contains some other files
such as:

• admin.py: which contains the administrative inter-
face definition for the application. We’ll have a fast
briefing on it at the end of the article.

• urls.py that contains app custom url routing.
• migrations directory/package: if south app is in-

stalled and the app contains migrations. This direc-
tory stores all the model changes.

• management directory/package: which contains
script that are executed on syncdb and custom ap-
plication commands.

• static directory: which contains application related
static files (i.e. js, css, images)

• templates directory: which contains HTML tem-
plates used for rendering.

• templatetags: which contains custom template tags
and filters used for rendering in this application.

Now that we have created an application, we must add
it to INSTALLED_APPS list to enable it. In settings.py,
the INSTALLED_APPS setting will be:

INSTALLED_APPS = (

 ‘django.contrib.auth’,

 ‘django.contrib.contenttypes’,

 ‘django.contrib.sessions’,

 ‘django.contrib.sites’,

 ‘django.contrib.messages’,

 ‘django.contrib.staticfiles’,

 ‘django.contrib.admin’,

 ‘bookshop’

)

Django takes care to create missing tables and popu-
lating the initial database with the syncdb command.

python manage.py syncdb

The first time that is executed, if there is no superuser,
the command asks to create it and guides the user to
creating of an admin account.

The syncdb command creates the database if it’s
missing; if some tables are not available, it will be cre-
ated them with sequences, indices and foreign key con-
traints.

Now our semi working complete application can be
executed in developer mode using the built-in django
with the following command:

python manage.py runserver

It starts a server listening on localhost port 8000, so
just navigate to http://127.0.0.1:8000 to see your site.

NOTE: generally for every common task, the Django
user doesn’t need to know the SQL language, as the
Django ORM manages it transparently and multi DBMS
(oracle, mysql, postgresql, Sqlite). Django doesn’t re-
quire user’s SQL knowledge.

Creating the first models
As example, we will create a simple Book Shop that
stores authors, their books and tags related to books.
The following ER diagram shows the models relations:
Figure 1.

Figure 1. Creating a book shop

This schema is easily converted to Django models
(Listing 1).

The models.py file
Create a Django Model is very easy: every model de-
rives from models.Model and it’s composed from sev-
eral typed fields, such as:

• CharField (mapped to SQL VARCHAR) used for
small parts of text.

• TextField (mapped to SQL TEXT) used for text of
undefined size

• DateField used to store date values
• IntegerField used to store integer values
• BooleanField used to store boolean values (True/

False) id must manage the null value, you shoud
use NullBooleanField

• FloatField used to store floating point values
• ForeignKey used to store reference to others models
• ManyToManyField used to manage a many to ma-

ny relation. (Django creates automatically accesso-
ry tables to manage them)

These are the most common field types: Django al-
lows to extends them so on the web there are a lot of
special fields for managing borderline cases.

Every field type has its own parameters: the most
common ones are:

• default: used to set a default value for the field
• blank (True/False): allows to put a empty value in

web interface;

en.sdjournal.org 19

BEGINNING WITh DjANGo

• null (True/False) allows to set null for this field
• max_lenght (Charfield or derivated): sets the maxi-

mum string size.

After having defined the models, and added the new
apps in INSTALLED_APPS in settings.py; it’s possi-
ble to create tables for the database. The command
is again:

python manage.py syncdb

This command creates required table, sequence and
index for the current installed applications.

Creating the First Views
Now we can start to design the urls and the views that
are required to show our books.

Django allows control the urls in the urls.py file. There
are several urls.py files in a Django project: one global
for the all the project (in our example mybookstore/urls.
py) and, typically, one for every app.

In our app (bookshop/urls.py) we’ll create two urls one
for access to the list of books and another one for show-
ing a book detail view (Listing 2).

Django urls control is based on regular expressions.
In our example, the first url command registers an emp-
ty string, a view “index” (expanded in “bookshop.views.
index”) and a name to call this url. The second url com-
mand registers a value “book_id” to be passed as vari-
able to a “detail” view (formaly “bookshop.views.detail”)
and the name of this url.

During url dispatching Django try to check the correct
view to serve based regular expression matching. The
view function is a simple Python function that returns a

Listing 1. bookshop/models.py – our bookshop models

from django.db import models

from django.utils.translation import ugettext_
lazy as _

class Author(models.Model):
 name = models.CharField(max_length=50)
 surname = models.CharField(max_length=50)

 class Meta:
 unique_together = [(“name”, “surname”)]
 ordering = [“name”, “surname”]
 verbose_name = _(‘Author’)
 verbose_name_plural = _(‘Authors’)

 def __unicode__(self):
 return u’%s %s’ % (self.name, self.

surname)

class Tag(models.Model):
 name = models.CharField(max_length=50,

unique=True)

 class Meta:
 ordering = [“name”]
 verbose_name = _(‘Tag’)
 verbose_name_plural = _(‘Tags’)

 def __unicode__(self):
 return u’%s’ % self.name

class Book(models.Model):
 title = models.CharField(max_length=250)
 description = models.TextField(default=””,

blank=True, null=True)
 release = models.DateField(auto_now_

add=True)
 in_stock = models.IntegerField(default=0)
 available = models.

BooleanField(default=True)
 price = models.FloatField(default=0.0)
 author = models.ForeignKey(Author)
 tags = models.ManyToManyField(Tag,

blank=True, null=True)

 class Meta:
 ordering = [“title”, “author”]
 verbose_name = _(‘Book’)
 verbose_name_plural = _(‘Books’)

 def __unicode__(self):
 return _(u’%s of %s’ % (self.title,

self.author))

Listing 2. bookshop/ urls.py – our bookshop urls

from django.conf.urls import patterns, url

urlpatterns = patterns(‘bookshop.views’,
 url(r’^$’, “index”, name=’index’),
 url(r’^(?P<book_id>\d+)$’, “detail”,

name=’detail’)
)

13/201320

Response object or its derived ones. We need to de-
fines two views “index” and “detail” (Listing 3).

The “index” needs to show all the available books: we
create a context with a books queryset and we render
it with a HTML template. The queyset, accessible for
every model using the objects attribute, is an ORM el-
ement that allows executing query on data without us-
ing SQL. The Django ORM takes to create and execute
SQL code. In the “index”, Book.objects.all() retrieve
all the books objects.

The detail view, which takes a parameter book_id
passed by url routing, create a context with a variable
“book” which contains the Book data. In this case, the
queryset method that executes a query with given pa-
rameters and returns a Book object or an Exception. If
there is no a book with pk equal to book_id variable a
HTTP 400 error is returned: this fallback prevents nasty
users url manipulation.

Creating the Templates
We have the data to render in context, now we need to
write some HTML fragments to render this data.

Django templates are generally simple HTML files,
with special placeholders:

• {{value}} or {{value0.method1.value2}} are used
to display objects, fields or complex nested values.
Django automatically tries to translate the object in-
to text. The failure is transparently managed and
nothing is printed.

• {{value|filter}} is used to change with a filter: a val-
ue transformation such as text formatting or num-
ber and date/time formatting. A field return a value
that can be passed to another filter.

• {% tagname … %} are used to process tags: func-
tions that extends HTML capabilities. (See https://
docs.djangoproject.com/en/dev/ref/templates/built-
ins/ for built in)

Generally templates of an application live in the template
subdirectory of the same application. For the shop/index.
html page will have a similar template (Listing 4).

Also the shop/details.html template is very simple:
Listing 5. The Django tags used in these templates are:

• load: it allows to load in the rendering context a tag
library. I loaded i18n to autolocalize string (translate
string in your local language).

• trans: it marks the string to be translate in local lan-
guage.

• for…endfor: it iterates a value.
• url: it executes an url reverse given a

namespace:url-name and optional values.
• empty: it’s a shortcut to render some text if not

books are available.
• if .. else ..endif it checks if a condition is verified.

The templatetags and filters are very powerful tools,
online there are a lot of libraries to extend the template
engine for executing ajax, pagination, …

Listing 3. bookshop/ views.py – our bookshop index and detail
views

from django.shortcuts import render

from django.http import Http404
from bookshop.models import Book

def index(request):
 context = {‘books’: Book.objects.all()}
 return render(request, ‘shop/index.html’,

context)

def detail(request, book_id):
 try:
 book = Book.objects.get(pk=book_id)
 except Book.DoesNotExist:
 raise Http404
 return render(request, ‘shop/detail.html’,

{‘book’: book})

Listing 4. shop/index.html – template used to render the index
page

<!DOCTYPE html>{% load i18n %}

<html><head><title>{% trans “Index of books”
%}</title></head>

<body>
<h1>{% trans “Book List” %}</h1>

{% for book in books %}
 <a href=”{% url “shop:detail” book.pk

%}”>
 {{ book.title }} {% trans “by” %} {{

book.author }}

 {% empty %}
 {% trans “No books” %}
 {% endfor %}

</body>
</html>

https://docs.djangoproject.com/en/dev/ref/templates/builtins/
https://docs.djangoproject.com/en/dev/ref/templates/builtins/
https://docs.djangoproject.com/en/dev/ref/templates/builtins/

en.sdjournal.org 21

BEGINNING WITh DjANGo

The results are shown in the following images (Figure
2 and Figure 3).

In this article we have privileged to keep simpler tem-
plates. It’s very easy creating cool sites using some css
templating such as twitter bootstrap or other javascript/
css web frameworks such as YUI or jquery.

Populating data with admin interface
The final step required to build every serious application
is to have an admin interface in which insert/edit/delete
your application data. Django, using reflection, allows
create simple admin interface with few lines of code.

Listing 5. shop/details.html – template used to render the detail
page

<!DOCTYPE html>{% load i18n %}

<html><head><title>{% trans “Book” %} – {{ book.
title }}</title></head>

<body>
{% trans “Books

Index” %}
<table>
 <tr>
 <td>{% trans “Title” %}</td><td>{{ book.

title }}</td>
 {% if book.description %}<td>{% trans

“Description” %}</td><td>{{
book.description }}</td>{%
endif %}

 <td>{% trans “Price” %}</td><td>{{ book.
price }}</td>

 <td>{% trans “Available” %}</td><td>{%
if book.available %}{% trans
“Yes” %}{% else %}{% trans “No”

%}{% endif %}</td>
 </tr>
</table>
</body>
</html>

Listing 6. mybookstore/urls.py – global project urls

from django.conf.urls import patterns, include, url

from django.contrib import admin
from django.views.generic import RedirectView
admin.autodiscover()

urlpatterns = patterns(‘’,
 url(r’^$’, RedirectView.as_

view(url=”shop/”)),
 url(r’^shop/’, include(‘bookshop.urls’,

namespace=”shop”)),
 url(r’^admin/’, include(admin.site.urls)),
)

To activate the admin interfaces, the admin module
discovery and the admin urls must be registered in the
main urls file (mybookstore/urls.py) (Listing 6).

To register some models in the admin interface a new
file in our application directory is required: bookshop/
admin.py (Listing 7).

Register a models in the admin is very simple; it’s
enough to call the admin.site.register method with the
model that we want register.

It’s possible to customize the admin per model pass-
ing a second value (a class derived by admin.Model-
Admin) that contains some extra info for rendering the
admin. In the example we have used:

• list _ display that contains a list of field names
that must be shown in the admin list view table

• search _ fields that contains a list of field names to
be used for searching items

Figure 3. The shop/detail.html template rendering a book

Figure 2. The shop/index.html template after inserting some books

Listing 7. bookshop/admin.py – bookshop admin file

from django.contrib import admin

from bookshop.models import Book, Author, Tag

class BookAdmin(admin.ModelAdmin):
 list_display = (‘title’, ‘author’,

‘available’, “in_stock”,
“price”)

 search_fields = [‘title’, “description”]
 list_filter = (‘available’, “in_stock”,

“price”)

admin.site.register(Book, BookAdmin)
admin.site.register(Author)
admin.site.register(Tag)

Figure 5. Django Admin – Book Add-Edit Page

Figure 4. Django Admin – Book List Page

• list _ filter that contains a list of field names to be
used for filtering.

The following images show the admin book list view
and the admin editing view (Figure 4 and Figure 5).

Conclusions
In this article we have a fast briefing on how easy and
powerful is Django. We have seen the installation, the
creation of an application, the base models-views-tem-
plates of Django and the admin interface setup. These
elements are the skeleton to build from simple sites to
big and complex ones.

If you are impatient, the tutorials and documentations
on Django site are good places to start with; otherwise
in the next articles we’ll go in deep on these article fea-
tures and we’ll introduce a lot of many others such as
the cache, user/group management, middlewares, cus-
tom filter and tags, …

ALBERTo PARo
Alberto Paro is the CTO at the Net Planet, a big-data company
working on advance knowledge management (NoSQL, NLP,
log analysis, CMS and KMS). He’s an Engineer from Politecni-
co di Milano, specialized in multi-user and multi-devices web
applications. In the spare time he write books for Packt Pub-
lishing and he works for opensource projects hosted on github
mainly django-nonrel, ElasticSearch and pyES.

on The Web
• https://pypi.python.org/pypi/virtualenvwrapper – virtua-

lenvwrapper page
• https://pypi.python.org/pypi/virtualenvwrapper-win – vir-

tualenvwrapper for windows page
• http://south.aeracode.org/ – intelligent schema and data

migrations for Django projects
• http://ipython.org/ – python interpreter power-up
• https://pypi.python.org/pypi/Pillow/ – Python Image library
• https://pypi.python.org/pypi/pip – python package installer
• https://www.djangoproject.com/ – Django site
• https://docs.djangoproject.com/en/1.5/ – Django docu-

mentation
• https://www.djangopackages.com/ – archive of catego-

rized Django packages

https://pypi.python.org/pypi/virtualenvwrapper
https://pypi.python.org/pypi/virtualenvwrapper-win
http://south.aeracode.org/
http://ipython.org/
https://pypi.python.org/pypi/Pillow/
https://pypi.python.org/pypi/pip
https://www.djangoproject.com/
https://docs.djangoproject.com/en/1.5/
https://www.djangopackages.com/

FA_2013 HTML5 Magazine Ad.indd 1 6/18/13 10:38 AM

13/201324

Better Django Unit Testing
Using Factories Instead of
Fixtures
Best practices always stress writing unit tests for your
applications. But writing useful tests for a Django web
application can be difficult, particularly if your data model has
lots of related models. In this article we will demonstrate how to
make writing these tests easier using model factories instead of
Django’s data fixtures.

“If it’s not tested it’s broken.”
Bruce EckelU nit testing is the key practice for improving soft-

ware quality. Even though most of us agree with
this in principle, all too often when things get dif-

ficult programmers end up skipping writing tests. We end
up being pragmatic rather than principled, especially when
deadlines are involved. The solution then to writing more
tests is not to grit our teeth and muscle through it, the so-
lution involves using the proper tools to make writing our
tests easier. For this article we will focus on testing Django
applications. Django is a popular web framework for the
Python programming language. The standard method for
testing Django applications requires you to create ‘fixtures’
– serialized forms of your data in separate files. While this
is workable in simple applications, as we will see it be-
comes unwieldy as your data model becomes more com-
plex. Fixtures have the following difficulties:

• You must also include all related data, even if not
relevant to the test.

• Writing in serialized notation (such as JSON) re-
quires a “mental shift” from writing Python code.

• Test data lives in a different file separate from the
test code.

• If you need a large amount of redundant data in
your tests, you’ll likely need to write a separate
script to do this rather than write it all by hand.

• When your data model changes, you will need to
rewrite most or all of your fixtures.

Testing with Fixtures
To illustrate these concepts let’s try an example web ap-
plication. We’ll use a simple blogging application. Full

code for this application can be found at: https://github.
com/aisipos/SampleBlog/.

The entities in this blog will be Users, Posts, Catego-
ries, and Comments. We’ll create a Django application
known as ‘blog’, and create our model classes like this:
Listing 1. To keep things simple, we will reuse Django’s
built in auth.User model. For the purposes of our dis-
cussion, we’ll pretend it looks like this: Listing 2.
Now suppose we need to write a test relating to the Post
model. Let’s assume we want to write a test to verify
that a view that renders a post shows the post’s cat-
egory correctly. At a minimum, this requires having sev-
eral objects, at least a Post, a Category, and a User.
The standard method of testing Django applications re-
quires placing these into a ‘fixture’. Fixtures are serial-
ized data in disk files, that can be stored in JSON, XML,
or YAML format. Fixtures can be created by hand, but
this is not recommended. Django provides a command
to serialize the data in your current database by running
the command: python manage.py dumpdata.

By default, this will serialize the data into JSON for-
mat to standard out. For our data model, if we wanted
to have a fixture to test a Post, the smallest fixture we
could use might look something like this: Listing 3.

We could use this fixture in our test case, but already
some questions may have come to your mind:

• How do I make this test data in the first place be-
fore calling dumpdata?

https://github.com/aisipos/SampleBlog/
https://github.com/aisipos/SampleBlog/

en.sdjournal.org

• How can I reuse this fixture if a different test case
needs slightly different test data?

• What happens when my data model changes?

Runtime data creation instead of fixtures
We could answer these questions using fixtures, but
there is an easier way to create your test data. Instead
of using fixtures, we build our data at runtime instead.

You could generate the data above by calling the mod-
el constructors individually like so (with some code left
out for brevity): Listing 4. For simple data models, this
may certainly be workable. However, when models have
many different fields and related-models span multiple
levels, we have to specify a lot of data even for simple
test cases. We can help reduce this burden by writing
“object factory” classes that allow us to specify default
values in object creation. This would allow us to speci-
fy only the data we make assertions about in our tests,
which would simplify writing these tests.

Using the model-mommy factory library
We could write our own object factory classes by
hand, but luckily there are libraries available to do
this for us. Two examples in the Python community
are model-mommy and Factory Boy. Both take their
inspiration (and their names) from the libraries Ob-
jectDaddy and FactoryGirl in the Ruby community.
In this article we’ll use the excellent model-mommy
library, written by Vanderson Mota dos Santos, and
available at https://github.com/vandersonmota/mod-
el_mommy. It can be installed in your Python virtual
environment by running:

pip install model_mommy

Let’s return to the task of creating a unit test for en-
suring the category name shows up when rendering a
post. In this case, the only piece of test data we care
about is the ‘name’ field of the category. Using mod-
el_mommy, we can write the entire test with just this
code: Listing 5. Note that this test case isn’t using fix-
tures at all, all the data for this test case is generated
by this single line:

post = mommy.make(Post, category__name=’TestCategory’)

In this one line, model-mommy has made for us a
Post, a Category, and a User. We have specified the
type of object, andname of the category in the argu-
ments to mommy.make, but nothing else. We didn’t
need to write any object factory class by hand. Model-
mommy has filled all the unspecified fields with auto-
generated data.

We don’t control this data (although as we’ll see lat-
er, we can tell model-mommy how to generate these

https://github.com/vandersonmota/model_mommy
https://github.com/vandersonmota/model_mommy

13/201326

fields), but for this test case this data is irrelevant since
we are not making any assertions about it. Compared
to using fixtures, some advantages may be immedi-
ately obvious:

• We didn’t have to separately make a Post, Catego-
ry, and User model instance, model_mommy can
make an entire object graph in one invocation.

• We didn’t have to generate any data ahead of time,
all the data is made inside the test itself.

• Since all the test data is inside the test itself, it is

easy to see by quick visual inspection that the as-
sertions match the data.

Tests written in this style are quicker to write and eas-
ier to read compared to using a fixture. Further, let’s
suppose we add a field ‘hometown’ to the User mod-
el. If we are using fixtures, we have to regenerate ev-
ery fixture that contains a User instance. With model-
mommy, model-mommy will end up creating new Us-
ers with hometown fields automatically populated. You
only need to specify a hometown in tests that make as-

Listing 1. Django application”blog”

class Tag(models.Model):

 “””
 One tag, represented as a single string
 “””
 tag = models.CharField(max_length=50)

class Category(models.Model):
 “””
 Categories for posts
 “””
 name = models.CharField(max_length=50)
 description = models.CharField(max_

length=300)

class Post(models.Model):
 “””
 Represent a single blog post
 “””
 title = models.CharField(max_length=300)
 body = models.TextField()
 date = models.DateTimeField()
 user = models.ForeignKey(User)
 category = models.ForeignKey(Category)
 tags = models.ManyToManyField(Tag)

class Comment(models.Model):
 “””
 Represent one comment on one blog post
 “””
 body = models.CharField(max_length=256)
 date = models.DateTimeField()
 post = models.ForeignKey(Post)
 user = models.ForeignKey(User)

Listing 2. User model in Django

class User(models.Model):

 “””
 Represent one user
 “””

 username = models.CharField()
 password = models.CharField()
 first_name = models.CharField()
 last_name = models.CharField()
 email = models.CharField()

Listing 3. Model of data

[

 {
 “fields”: {
 “description”: “TestDesciption”,
 “name”: “TestCategory”
 },
 “model”: “blog.category”,
 “pk”: 1
 },
 {
 “fields”: {
 “body”: “Test Body”,
 “category”: 1,
 “date”: “2013-08-09T00:21:32.766Z”,
 “tags”: [],
 “title”: “Test Post”,
 “user”: 1
 },
 “model”: “blog.post”,
 “pk”: 1
 }
 {
 “fields”: {
 “email”: “test@user.com”,
 “first_name”: “test”,
 “last_name”: “user”,
 “password”: “”,
 “username”: “TestUser”
 },
 “model”: “blog.user”,
 “pk”: 1
 },
]

en.sdjournal.org 27

DjANGo UNIT TESTING

sertions about it, which presumably you will write only
after you create the new field. All of your existing tests
should continue to run.

Model-mommy basic Usage
The basic usage of model-mommy is fairly simple. The
typical use involves calling mommy.make to create an in-
stance of a model. You pass in as arguments all of the
fields that you care about. Model-mommy will auto-gen-
erate the rest for you. Here’s an example:

new_model = mommy.make(Model, field1=value1,

field2=value2, …)

This instructs model-mommy to make an instance
of a hypothetical Model class, specifying values for

Listing 4. Build of data runtime

category = Category(name=’TestCategory’, description=’test’)

category.save()
user = User(username=’TestUser’, email=’test@user.com’, …)
user.save()
post = Post(user=user, category=category, body=’test’, …)
post.save()

Listing 5. Test with model_mommy

from django.test import TestCase

from model_mommy import mommy

class BlogTests(TestCase):
 def test_post_displays_category(self):
 “””
 Test view category page
 “””
 #Make a post and category
 post = mommy.make(Post, category__name=’TestCategory’)
 #Request the posts view page
 response = self.client.get(‘/post/{}’.format(post.id))
 self.assertContains(response, ‘TestCategory’)

Listing 6. Specifing fields

>>> from model_mommy import mommy

>>> from model_mommy.recipe import seq, Recipe
>>> category_recipe = Recipe(Category, name=seq(‘Test’))
>>> category_recipe.make().name
‘Test1’
>>> category_recipe.make().name
‘Test2’

field1 and field2. If Model contains other fields, mod-
el-mommy will automatically generate values for
these fields. The instance is persisted in the con-
figured database immediately, thus it will be visible
to subsequent code. You can use the mommy.prepare
method if you don’t want the new instance to be per-
sisted in the database.

Model-mommy will create any foreign-key related
models that you don’t specify automatically. If you
need to specify fields on these auto-generated mod-
els, you can tell model-mommy to create these fields
in one step using a double underscore notation similar
to the Django ORM:

new_model = mommy.make(Model, related__field=’test’)

assert new_model.related.field == ‘test’

Using this notation, you can of-
ten create data for a test in a
single line of code. Howev-
er, if you are generating many
fields, it can be easier to gen-
erate data in multiple steps:

new_user = mommy.make(User,

username=’testuser’, email=’t@t.

com’)

new_post = mommy.make(Post,

post=’test’, user=new_user)

Using model-mommy
recipes
For the fields you do not specify,
model-mommy will auto-generate
a random value. These will not be
human-readable. For instance:

>>> mommy.save(Category).name

‘MhInizJgWlLYrNFVkxRgsTyOXHHaO

fqhrHrQbeGRADBEjzBTJI’

If you do want to control how
model-mommy generates un-
specified fields, you can define
a “Recipe” that tells model-
mommy how to generate fields
you want specified: Listing 6.

In the above example we use
the seq function, which allows
you to make unique values for
multiple instances.

Recipes can also use call-
ables to programatically gener-
ate fields. Recipes can also use
other recipes to create foreign

13/201328

keys. Suppose we wanted be able to create multiple
posts, all with unique dates and unique users. We could
do this as follows: Listing 7.

For simple test cases, you can get by without needing
to specify recipes. However, if you need more control
over how model-mommy generates data, recipes can
help you accomplish this.

Test cases with larger amounts of data
Suppose we coded our blog so that every user who had
50 posts or more had the words ‘gold star’ printed on
their profile page. This would be difficult and repetitive
to do with fixtures, but is very easy to do with model
mommy: Listing 8.

In this example we used model-mommy’s shortcut of
passing the ‘_quantity’ argument to mommy.make to
create many models as once. We could have just as
easily created the models in our own loop, but using _
quantity can be convenient. We tell the make function to
generate each one with the same generated user. Mod-
el-mommy will automatically generate categories for all
of our posts, since we didn’t specify one on invocation.

If we had wanted to do this
with a fixture, we’d have to
write a script to generate a
large amount of test data, and
use the dumpdata management
command to turn this data into
a JSON fixture. Most likely we’d
have to check both this script
and the resulting fixture into our
project’s source control, and
change them if the schema of
User or Post ever changed. Us-
ing model-mommy, all these
steps are replaced with one line
of code.

Summary
Using specific examples, I’ve
shown how using model-mom-
my can make your Django unit
tests much more concise, sim-
pler, and robust. We covered
some basic patterns of how
to use model-mommy to build
simple test cases with simple
as well as repeated data. I’d
like to thank Vanderson Mota
dos Santos and the entire mod-
el-mommy development com-
munity for their helpful contribu-
tion to the Django development
community. Hopefully the meth-
ods shown in this article can

greatly simplify the writing of tests in your Django appli-
cations, leading to better test coverage and more robust
code. More importantly, by removing unnecessary data
and boilerplate, it just makes writing tests more fun.

ANToN SIPoS
Anton Sipos has been programming computers since they were
8 bits old. He has professional experience in systems ranging
from microcontrollers to high traffic servers. He is an active
contributor in the Python open-source community. His musings
on programming can be found at http://softwarefuturism.com.
You can reach him at anton@softwarefuturism.com.

Listing 7. Programatically generating fields

>>> from model_mommy import mommy

>>> from model_mommy.recipe import seq, Recipe, foreign_key
>>> from datetime import datetime
>>> user_recipe = Recipe(User, username=seq(‘testuser’))
>>> post_recipe = Recipe(Post, date=datetime.now, user=foreign_key(user_

recipe))
>>> post_recipe.make().user.name
‘testuser1’
>>> post_recipe.make().user.name
‘testuser2’
>>> post_recipe.make().date
datetime.datetime(2013, 8, 9, 0, 17, 17, 132454)

Listing 8. Model mommy for „golden star”

from django.test import TestCase

from model_mommy import mommy

class BlogTests(TestCase):
 def test_gold_star(self):
 “””
 Test gold star appearing in user page
 “””
 user = mommy.make(User)
 posts = mommy.make(Post, user=user, _quantity=50)
 response = self.client.get(‘/user/{}’.format(user.username))
 self.assertContains(response, ‘gold star’)

http://softwarefuturism.com

Software Developer Journal Subscribers — use the code ITDSD13 and get

$200 off any of the registration packages!

Go to devconnections.com to register

Pento
n

Pento
n

 New CoNTeNT — GreaT NeTworkING — FuN!

Mary jo foley

Mark russinovich

Mark Minasi

johan arwidMark

chander dhall

dan holMe

Michael otey

sean deuby

▼ InsIghts from the experts

For more than 13 years, IT/Dev Connections has been the
premier training event for developers and IT professionals.
IT/Dev Connections provides in-depth training on the technology
platforms you’re currently using, real-world solutions that will give
you the competitive edge, and expert insight into how to plan
for and implement the latest technologies. with more than 175
sessions to choose from, the conference offers training on HTML5,
aSP.NeT, exchange, SQL Server, windows oS, windows Server,
SharePoint, Visual Studio, office 365, business intelligence, cloud,
and all types of development.

Las Vegas
Mandalay Bay

Sept 30 – Oct 4, 2013

Brought to you By ▼

13/201330

Using Python Fabric to
Automate GNU/Linux
Server Configuration Tasks
Fabric is a Python library and command-line tool for automating
tasks of application deployment or system administration via
SSH. It provides a basic suite of operations for executing local or
remote shell commands and transfer files.

F abric (http://www.fabfile.org) is a Python library
and command-line tool for automating tasks of
application deployment and system administra-

tion via SSH. It provides tools for executing local and re-
mote shell commands and for transferring files through
SSH and SFTP, respectively. With these tools, it is pos-
sible to write application deployment or system admin-
istration scripts, which allows to perform these tasks by
the execution of a single command.

In order to work with Fabric, you should have Python
and the Fabric Library installed on your local comput-
er and we will consider using a Debian-based distribu-
tion on the examples within this article (such as Ubuntu,
Linux Mint and others).

As Python is shipped by default on most of the GNU/
Linux distributions, you probably won’t need to install
it. Regarding the Fabric library, you may use pip to in-
stall it. Pip is a command line tool for installing and
managing Python packages. On Debian-based distri-
butions, it can be installed with apt-get via the python-
pip package:

 $ sudo apt-get install python-pip

After installing it, you may update it to the latest ver-
sion using pip itself:

 $ sudo pip install pip --upgrade

After that, you may use pip to install Fabric:

 $ sudo pip install fabric

To work with Fabric, you must have SSH installed and
properly configured with the necessary user’s permis-
sions on the remote servers you want to work on. In the
examples, we will consider a Debian system with IP ad-
dress 192.168.250.150 and a user named “administra-
tor” with sudo powers, which is required only for perform-
ing actions that require superuser rights. One way to use
Fabric is to create a file called fabfile.py containing one
or more functions that represent the tasks we want to ex-
ecute, for example, take a look at Listing 1.

In this example, we have defined two tasks called “re-
mote_info” and “local_info”, which are used to retrieve
local and remote systems information through the com-
mand “uname -a”. Also, we have defined the host user
and address we would like to use to connect to the re-
mote server using a special dictionary called “env”.

Having this defined, it is possible to execute one of
the tasks using the shell command fab. For example, to
execute the task “local_info”, from within the directory
where fabfile.py is located, you may call:

 $ fab local_info

which gives the output shown on Listing 2.
Similarly, you could execute the task called “remote_

info”, calling:

 $ fab remote_info

In this case, Fabric will ask for the password of the us-
er “administrator”, as it is connecting to the server via
SSH, as shown on Listing 3.

en.sdjournal.org 31

USING PyThoN FABRIC

There are lots of parameters that can be used with the
fab command. To obtain a list with a brief description of
them, you can run fab --help. For example, running fab
-l, it is possible to check the Fabric tasks available on
the fabfile.py file. Considering we have the fabfile.py
file shown on Listing 1, we obtain the output of Listing 4
when running fab -l.

As in the previous example, on the file fabfile.py, the
function run() may be used to run a shell command on
a remote server and the function local() may be used
to run a shell command on the local computer. Besides
these, there are some other possible functions to use
on fabfile.py:

• sudo(‘shell command’): to run a shell command on
the remote server using sudo,

• put(‘local path’, ‘remote path’): to send a file
from a local path on the local computer to the re-
mote path on the remote server,

• get(‘remote path’, ‘local path’): to get a file from
a remote path on the remote server to the local
path on the local computer.

Also, it is possible to set many other details about the
remote connection with the dictionary “env”. To see a
full list of “env” vars that can be set, visit:

http://docs.fabfile.org/en/1.6/usage/env.html#full-list-
of-env-vars.

Among the possible settings, its worth to spend some
time commenting on some of them:

• user: defines which user will be used to connect to
the remote server;

• hosts: a Python list with the addresses of the hosts
that Fabric will connect to perform the tasks. There
may be more than one host, e.g.,

 env.hosts = [‘192.168.250.150’,’192.168.250.151’]

• host_string: with this setting, it is possible to config-
ure a user and a host at once, e.g.

 env.host_string = “administrator@192.168.250.150”

As it could be noticed from the previous example, Fab-
ric will ask for the user’s password to connect to the
remote server.

However, for automated tasks, it is interesting to be
able to make Fabric run the tasks without prompting for
any user input. To avoid the need of typing the user’s
password, it is possible to use the env.password setting,
which permits to specify the password to be used by
Fabric, e.g.

 env.password = ‘mysupersecureadministratorpassword’

If the server uses SSH keys instead of passwords to
authenticate users (actually, this is a good practice
concerning the server’s security), it is possible to use
the setting env.key _ filename to specify the SSH key to
be used. Considering that the public key ~/.ssh/id _

rsa.pub is installed on the remote server, you just need
to add the following line to fabfile.py:

 env.key_filename = ‘~/.ssh/id_rsa’

It is also a good security practice to forbid root user
from logging in remotely on the servers and allow the
necessary users to execute superuser tasks using the

Listing 1. A basic fabfile. File: fabfile.py

-*- coding: utf-8 -*-

from fabric.api import *

env.hosts = [‘192.168.250.150’]

env.user = ‘administrator’

def remote_info():

 run(‘uname -a’)

def local_info():

 local(‘uname -a’)

Listing 2. output of fab local_info

[192.168.250.150] Executing task ‘local_info’

[localhost] local: uname -a

Linux renato-laptop 3.2.0-23-generic #36-Ubuntu SMP

Tue Apr 10 20:39:51 UTC 2012

x86_64 x86_64 x86_64 GNU/Linux

Listing 3. Output of fab remote_info

[192.168.250.150] Executing task ‘remote_info’

[192.168.250.150] run: uname -a

[192.168.250.150] Login password for

‘administrator’:

[192.168.250.150] out: Linux debian-vm 2.6.32-5-686

#1 SMP Sun May 6 04:01:19 UTC

2012 i686 GNU/Linux

[192.168.250.150] out:

Done.

Disconnecting from 192.168.250.150... done.

http://docs.fabfile.org/en/1.6/usage/env.html#full-list-of-env-vars
http://docs.fabfile.org/en/1.6/usage/env.html#full-list-of-env-vars

13/201332

sudo command. On a Debian system, to allow the “ad-
ministrator” user to perform superuser tasks using su-
do, first you have to install the package sudo, using:

 # apt-get install sudo

and then, add the “administrator” user to the group
“sudo”, which can be done with:

 # adduser administrator sudo

Having this done, you could use the sudo() function on
Fabric scripts to run commands with sudo powers. For
example, to create a mydir directory within /home, you
may use the fabfile.py file shown on Listing 5.

And call

 $ fab create_dir

which will ask for the password of the user “administra-
tor” to perform the sudo tasks, as shown on Listing 6.

When using SSH keys to log in to the server, you can
use the env.password setting to specify the sudo pass-
word, to avoid having to type it when you call the Fabric
script. In the previous example, by adding:

 env.password = ‘mysupersecureadministratorpassword’

would be enough to make the script run without the
need of user intervention.

Listing 4. output of fab -l

Available commands:

 local_info

 remote_info

Listing 5. script to create a directory. File: fabfile.py

-*- coding: utf-8 -*-

from fabric.api import *

env.hosts = [‘192.168.250.150’]

env.user = ‘administrator’

env.key_filename = ‘~/.ssh/id_rsa’

def create_dir():

 sudo(‘mkdir /home/mydir’)

Listing 6. output of fab create_dir

[192.168.250.150] Executing task ‘create_dir’

[192.168.250.150] sudo: mkdir /home/mydir

[192.168.250.150] out:

[192.168.250.150] out: We trust you have received the

usual lecture from the local System

[192.168.250.150] out: Administrator. It usually boils

down to these three things:

[192.168.250.150] out:

[192.168.250.150] out: #1) Respect the privacy of

others.

[192.168.250.150] out: #2) Think before you type.

[192.168.250.150] out: #3) With great power comes

great responsibility.

[192.168.250.150] out:

[192.168.250.150] out: sudo password:

[192.168.250.150] out:

Done.

Disconnecting from 192.168.250.150... done.

Listing 7. Example fabfile using an SSH key with a passphrase.
File: fabfile.py

-*- coding: utf-8 -*-

from fabric.api import *

env.hosts = [‘192.168.250.150’]

env.user = ‘administrator’

env.key_filename = ‘~/.ssh/id_rsa2’

def remote_info():

 run(‘uname -a’)

def create_dir():

 sudo(‘mkdir /home/mydir’)

Listing 8. Output of fab remote_info

[192.168.250.150] Executing task ‘remote_info’

[192.168.250.150] run: uname -a

[192.168.250.150] Login password for ‘administrator’:

[192.168.250.150] out: Linux debian-vm 2.6.32-5-686

#1 SMP Sun May 6 04:01:19 UTC 2012

i686 GNU/Linux

[192.168.250.116] out:

Done.

Disconnecting from 192.168.250.150... done.

en.sdjournal.org 33

USING PyThoN FABRIC

However, some SSH keys are created using a pass-
phrase, required to log in to the server. Fabric treat these
passphrases and passwords similarly, which can some-
times cause confusion. To illustrate Fabric’s behavior,
consider the user named “administrator” is able to log
in to a remote server only by using his/her key named
~/.ssh/id_rsa2.pub, created using a passphrase, and
the Fabric file shown on Listing 7.

In this case, calling:

 fab remote_info

makes Fabric ask for a “Login password”. However,
as you shall notice, this “Login password” refers to the
necessary passphrase to log in using the SSH key, as
shown on Listing 8.

Listing 9. Example fabfile using an SSH key with a passphrase.
Improved to avoid the need of user intervention. File: fabfile.py

-*- coding: utf-8 -*-

from fabric.api import *

env.hosts = [‘192.168.250.150’]

env.user = ‘administrator’

env.key_filename = ‘~/.ssh/id_rsa2’

env.password = ‘sshpassphrase’

def remote_info():

 run(‘uname -a’)

def create_dir():

 env.password = ‘mysupersecureadministratorpassword’

 sudo(‘mkdir /home/mydir’)

Listing 10. Another example fabfile using an SSH key with a
passphrase. Improved to avoid the need of user intervention. File:
fabfile.py

-*- coding: utf-8 -*-

from fabric.api import *

env.hosts = [‘192.168.250.150’]

def create_dir():

 env.user = ‘administrator’

 env.key_filename = ‘~/.ssh/id_rsa2’

 env.password = ‘sshpassphrase’

 run(‘:’)

 env.password = ‘mysupersecureadministrator

password’

 sudo(‘mkdir /home/mydir’)

Listing 11. Example using Python’s with statement. File: fabfile.py

-*- coding: utf-8 -*-

from fabric.api import *

env.hosts = [‘192.168.250.150’]

def create_dir():

 with settings(user = ‘administrator’,

 key_filename = ‘~/.ssh/id_rsa2’,

 password = ‘sshpassphrase’):

 run(‘:’)

 env.password = ‘mysupersecureadministrator

password’

 sudo(‘mkdir /home/mydir’)

Listing 12. Python Script using Fabric. File: mypythonscript.py

#! /usr/bin/env python

-*- coding: utf-8 -*-

from fabric.api import *

def create_dir():

 with settings(host_string =

‘administrator@192.168.250.150’,

 key_filename = ‘~/.ssh/id_rsa2’,

 password = ‘sshpassphrase’):

 run(‘:’)

 env.password = ‘mysupersecureadministrator

password’

 sudo(‘mkdir /home/mydir’)

if __name__ == ‘__main__’:

 create_dir()

In this case, if you specify the env.password setting, it
will be used as the SSH passphrase and, when running
the create_dir script, Fabric will ask for the password
of the user “administrator”. To avoid typing any of these
passwords, you may define env.password as the SSH
passphrase and, within the function that uses sudo(), re-
define it as the user’s password, as shown on Listing 9.

Alternatively, you could specify the authentication set-
tings from within the task function, as shown on Listing 10.

On this example, the command : does not do any-
thing. It only serves as a trick to enable setting env.
password twice: first for the SSH passphrase, required
for login and then to the user’s password, required for
performing sudo tasks.

If necessary, it is possible to use Python’s with state-
ment (learn about it on http://www.python.org/dev/peps/

http://www.python.org/dev/peps/pep-0343/

Listing 13. A very basic deploy example. File: deployhtml.py

#! /usr/bin/env python

-*- coding: utf-8 -*-

from fabric.api import *

def deploy_html():

 with settings(host_string = ‘administrator@192.168.250.150’,

 key_filename = ‘~/.ssh/id_rsa2’,

 password = ‘sshpassphrase’):

 run(‘:’)

 env.password = ‘mysupersecureadministratorpassword’

 local(‘cd ~; tar -czvf website.tar.gz ./website/*’)

 put(‘~/website.tar.gz’, ‘~’)

 run(‘tar -xzvf ~/website.tar.gz’)

 sudo(‘mv /home/administrator/website /var/www’)

 sudo(‘chown -R www-data:www-data /var/www/website’)

 sudo(‘/etc/init.d/apache2 restart’)

 local(‘rm ~/website.tar.gz’)

if __name__ == ‘__main__’:

 deploy_html()

pep-0343/), to specify the env settings. A compatible
create_dir() task using the with statement is shown on
Listing 11.

The fab command is useful for performing system
administration and application deployment tasks from
a shell console. However, sometimes you may want to
execute tasks from within your Python scripts. To do
this, you may simply call the Fabric functions from your
Python code. To build a script that runs a specific task
automatically, such as create_dir() shown previously,
you create a Python script as shown on Listing 12.

As we have seen, with Fabric, it is possible to auto-
mate the execution of tasks that can be done by execut-
ing shell commands locally, and remotely, using SSH.
It is also possible to use Fabric’s features on other Py-
thon scripts, and perform dynamic tasks, enabling the
developer to automate virtually anything that can be
automated. The main goal of this article was to show
Fabric’s basic features and try to show a solution to dif-
ferent scenarios of remote connections, regarding dif-
ferent types of authentication. From this point, you may
customize your Fabric tasks to your needs using ba-
sically the functions local(), run(), and sudo() to run
shell commands and put() and get() to transfer files.

To conclude, we show a more practical example of
a Python script that uses Fabric to deploy a very ba-
sic HTML application on a server. The script shown
on Listing 13 creates a tarball from the local HTML
files at ~/website, sends it to the server, expands the
tarball, moves the files to the proper directory (/var/
www/website) and restarts the server. Hope this arti-
cle helped you learning a bit about Fabric to automate
some of your tasks!

RENATo CANDIDo
Renato Candido is a free (as in freedom) {software, hardware
and culture} enthusiast, who works as a technology consul-
tant at Liria Technology, Brazil, trying to solve the peoples’
(technical) problems using these sorts of tools (he actually
thinks the world would be a little better if all resources were
free as in freedom). He is an electronics engineer, and enjoys
to learn things related to signal processing and computer sci-
ence (and he actually thinks that there could be self-driving
cars and speaking robots designed exclusively with free re-
sources). To know a bit more about him, visit: http://www.re-
natocandido.org.

http://www.python.org/dev/peps/pep-0343/

IN SOME CASES

nipper studio
HAS VIRTUALLY

REMOVED

MANUAL AUDIT
CISCO SYSTEMS INC.

theNEED FOR a

Titania’s award winning Nipper Studio configuration
auditing tool is helping security consultants and end-
user organizations worldwide improve their network
security. Its reports are more detailed than those typically
produced by scanners, enabling you to maintain a higher
level of vulnerability analysis in the intervals between
penetration tests.

Now used in over 45 countries, Nipper Studio provides a
thorough, fast & cost effective way to securely audit over
100 different types of network device. The NSA, FBI, DoD
& U.S. Treasury already use it, so why not try it for free at
www.titania.com

www.titania.com

U P D A T E
NOW WITH
S T I G
AUDITING

13/201336

The Python Logging
Module is Much Better
Than Print Statements
A while back, I swore off using adding print statements to
my code while debugging. I forced myself to use the python
debugger to see values inside my code. I’m really glad I did
it. now I’m comfortable with all those cute single-letter
commands that remind me of gdb. the pdb module and the
command-line pdb.py script are both good friends now.

However, every once in a while, I find myself
lapsing back into cramming a bunch of print
statements into my code because they’re just

so easy. Sometimes I don’t want to walk through my
code using breakpoints. I just need to know a simple
value when the script runs.

The bad thing is when I write in a bunch of print state-
ments, then debug the problem, then comment out or
remove all those print statements, then run into a slight-
ly different bug later., and find myself adding in all those
print statements again. So I’m forcing myself to use log-
ging in every script I do, no matter how trivial it is, so

Listing 1. Python standard library logging module

This is a.py

def g():

 1 / 0

def f():

 print “inside f!”

 try:

 g()

 except Exception, ex:

 print “Something awful happened!”

 print “Finishing f!”

if __name__ == “__main__”: f()

Listing 2. Rewriting python standard library logging module

This is b.py.

import logging

Log everything, and send it to stderr.

logging.basicConfig(level=logging.DEBUG)

def g():

 1/0

def f():

 logging.debug(“Inside f!”)

 try:

 g()

 except Exception, ex:

 logging.exception(“Something awful happened!”)

 logging.debug(“Finishing f!”)

if __name__ == “__main__”:

 f()

en.sdjournal.org

Listing 3. Output in Python logging module

$ python b.py

DEBUG 2007-09-18 23:30:19,912 debug 1327 Inside f!

ERROR 2007-09-18 23:30:19,913 error 1294 Something

awful happened!

Traceback (most recent call last):

 File “b.py”, line 22, in f

 g()

 File “b.py”, line 14, in g

 1/0

ZeroDivisionError: integer division or modulo by

zero

DEBUG 2007-09-18 23:30:19,915 debug 1327 Finishing

f!

Listing 4. Custom logger object

This is c.py

import logging

Make a global logging object.

x = logging.getLogger(“logfun”)

x.setLevel(logging.DEBUG)

h = logging.StreamHandler()

f = logging.Formatter(“%(levelname)s %(asctime)s

%(funcName)s %(lineno)d %(message)s”)

h.setFormatter(f)

x.addHandler(h)

def g():

 1/0

def f():

 logfun = logging.getLogger(“logfun”)

 logfun.debug(“Inside f!”)

 try:

 g()

 except Exception, ex:

 logfun.exception(“Something awful

happened!”)

 logfun.debug(“Finishing f!”)

if __name__ == “__main__”:

 f()

13/201338

fining a custom logger object, and I’m using a more de-
tailed format: Listing 4. And the output: Listing 5. Now
I will change how the script handles the different types
of log messages. Debug messages will go to a text file,
and error messages will be emailed to me so that I am
forced to pay attention to them (Listing 6). Lots of real-
ly great handlers exist in the logging.handlers module.
You can log by sending HTTP gets or posts, you can
send UDP packets, you can write to a local file, etc.

W. MATThEW WILSoN
Matt started his career doing economic research and statisti-
cal analysis. Then he realized he had an aptitude for program-
ming after working with tools like SAS, perl, and the UNIX op-
erating system. He spent the next several years taking inter-
esting graduate courses in computer science at night while
working as a developer and then a technical lead for a team
of developers. In 2007, Matt walked out of the relative securi-
ty of the corporate world and then co-founded OnShift, a web
application that helps employers intelligently manage their
shift-based work force.

Listing 5. Output to custom logger object
$ python c.py

DEBUG 2007-09-18 23:32:27,157 f 23 Inside f!

ERROR 2007-09-18 23:32:27,158 exception 1021 Something

awful happened!

Traceback (most recent call last):

 File “c.py”, line 27, in f

 g()

 File “c.py”, line 17, in g

 1/0

ZeroDivisionError: integer division or modulo by zero

DEBUG 2007-09-18 23:32:27,159 f 33 Finishing f!

Listing 6. Handling the different types of log messages

This is d.py

import logging, logging.handlers

Make a global logging object.

x = logging.getLogger(“logfun”)

x.setLevel(logging.DEBUG)

This handler writes everything to a file.

h1 = logging.FileHandler(“/var/log/myapp.log”)

f = logging.Formatter(“%(levelname)s %(asctime)s

%(funcName)s %(lineno)d %(message)

s”)

h1.setFormatter(f)

h1.setLevel(logging.DEBUG)

x.addHandler(h1)

This handler emails me anything that is an error or worse.

h2 = logging.handlers.SMTPHandler(‘localhost’, ‘logger@

tplus1.com’, [‘matt@tplus1.com’], ‘ERROR log’)

h2.setLevel(logging.ERROR)

h2.setFormatter(f)

x.addHandler(h2)

def g():

 1/0

def f():

 logfun = logging.getLogger(“logfun”)

 logfun.debug(“Inside f!”)

 try:

 g()

 except Exception, ex:

 logfun.exception(“Something awful happened!”)

 logfun.debug(“Finishing f!”)

if __name__ == “__main__”:

 f()

I can get comfortable with the python standard library
logging module. So far, I’m really happy with it. I’ll start
with a script that uses print statements and revise it a
few times and show off how logging is a better solution.
Here is the original script, where I use print statements
to watch what happens: Listing 1. Running the script
yields this output:

$ python a.py

inside f!

Something awful happened!

Finishing f!

It turns out that rewriting that script to use logging in-
stead just ain’t that hard: Listing 2. And here is the out-
put: Listing 3. Note how we got that pretty view of the
traceback when we used the exception method. Doing
that with prints wouldn’t be very much fun. So, at the
cost of a few extra lines, we got something pretty close
to print statements, which also gives us better views
of tracebacks. But that’s really just the tip of the ice-
berg. This is the same script written again, but I’m de-

http://216software.com/wp-content/uploads/2013/07/wilson_chickens_034.jpg
http://onshift.com/

A BZ Media Event

Big Data TechCon™ is a trademark of BZ Media LLC.

“Big Data TechCon is loaded with great networking
opportunities and has a good mix of classes with technical
depth, as well as overviews. It’s a good, technically-focused
conference for developers.”

—Kim Palko, Principal Product Manager, Red Hat

“Big Data TechCon is great for beginners as well as
advanced Big Data practitioners. It’s a great conference!”

—Ryan Wood, Software Systems Analyst, Government of Canada

“If you’re in or about to get into Big Data, this is the
conference to go to.”

—Jimmy Chung, Manager, Reports Development, Avectra

Discover how to master Big Data from real-world practitioners – instructors
who work in the trenches and can teach you from real-world experience!

Big Data gets real
at Big Data TechCon!

San Francisco
October 15-17, 2013
www.BigDataTechCon.com

• Collect, sort and store massive quantities
of structured and unstructured data

• Process real-time data pouring into
your organization

• Master Big Data tools and technologies
like Hadoop, Map/Reduce, NoSQL
databases, and more

• Learn HOW TO integrate data-collection
technologies with analysis and

business-analysis tools to produce
the kind of workable information
and reports your organization needs

• Understand HOW TO leverage Big Data
to help your organization today

Over 60
how-to

practical classes

and tutorials
to choose

from!

The HOW-TO conference for Big Data and IT professionals

Come to Big Data TechCon to learn the best ways to:

FlashNFlex_Layout 1 7/30/13 9:28 AM Page 1

13/201340

Python, Web Security and
Django

Web sites must operate securely. Once we get past the basics
of asking users to login, what other use cases are there? It
turns out that almost everything is security-related. Security
must be a pervasive feature of our design. Details very, so we’ll
focus on Django.

Lots of folks like to wring their hands over the Big
Vague Concept (BVC) they call “security”. Be-
cause it’s nothing more than a BVC, there’s a lot

of quibbling. We’ll try to move past the vagueness to
concrete and interesting stuff. We’ll focus on Python
and Django, specifically.

It’s important to avoid wasting hours trying to detail
all the business risks and costs. I’ve had the misfortune
of sitting through meetings where managers spout the
“We don’t know what we don’t know” objection to imple-
menting a RESTful web services interface. This leads
them to the fallback plan of trying to quantify risk. Their
objection amounts to “We don’t know every possible
vulnerability; therefore we don’t know how to secure ev-
ery possible vulnerability; therefore we should stop de-
velopment right now!”

The OWASP top-ten list is a good place to start. It’s a
focused list of specific vulnerabilities. https://www.owasp.
org/index.php/Category:OWASP_Top_Ten_Project.

This list provides a lot of evidence that an architec-
ture based on Apache plus Django plus Python (using
mod_wsgi for glue) prevents almost all of these vulnera-
bilities. Other Python-based web frameworks will do al-
most as well as Django. One secret (besides using Py-
thon) is relying on Apache for the “heavy lifting”. Apache
must be used to serve the static content without any
interaction from Django. It acts as a kind of cache. The
application processing is deployed via a Web Services
Gateway Interface (WSGI). mod_wsgi can run this in a
separate process (Figure 1).

This architecture has a number of other benefits re-
garding scalability and manageability. But this article is

about security. So let’s review some use cases for web
security considerations. Specifically users, passwords,
authentication and authorization.

Basics
Two of the pillars of security are Authentication (who are
you?) and Authorization (what are you allowed to do?).

Authentication is not something to be invented. It’s
something to be used. In our preferred architecture,
with an Apache/Django application, the Django authen-
tication system works nicely for identity management.
It supports a simple model of users, groups and pass-
words. It can be easily extended to add user profiles.

Django handles passwords properly. This cannot
be emphasized enough. Django uses a sophisticated
state-of-the art hash of the password. Not encryption. I’ll
repeat that for folks who still think encrypted passwords
are a good idea.

Always use a hash of a password. Never use encryption
Best security practice is never to store a password that
can be easily recovered. A hash can be undone eventual-
ly, but encryption means all passwords are exposed once
the encryption key is available. The Django auth mod-
ule includes methods that properly hash raw passwords,
in case you have the urge to implement your own login
page https://docs.djangoproject.com/en/dev/ref/contrib/
auth/#django.contrib.auth.models.User.set_password.

Better Authentication
Better than Django’s internal authentication is some-
thing like Forge Rock Open AM. This takes identity

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://docs.djangoproject.com/en/dev/ref/contrib/auth/#django.contrib.auth.models.User.set_password
https://docs.djangoproject.com/en/dev/ref/contrib/auth/#django.contrib.auth.models.User.set_password

en.sdjournal.org 41

PyThoN, WEB SECURITy AND DjANGo

management out of Django entirely http://forgerock.
com/what-we-offer/open-identity-stack/openam/.

While this adds components to the architecture, it’s
also a blessed simplification. All of the username and
password folderol is delegated to the Open AM server.

Any time a page is visited without a valid Open AM to-
ken, the response from a Django app must be a simple
redirect to the Open AM login server. Even the user sto-
ries are simplified by assuming a valid, active user.

The bottom line is this: authentication is a solved
problem. This is something we shouldn’t reinvent. Not
only is it solved, but it’s easy to get wrong when trying
to reinvent it.

Best practice is to download or purchase an estab-
lished product for identity management and use it for all
authentication.

Authorization
The Authorization problem is more nuanced, and more
interesting than Authentication. Once we know who the
user is, we still have to determine what they’re allowed
to do. This varies a lot. A small change to the organiza-
tion, or a business process, or available data can have
a ripple effect through the authorization rules.

We have to emphasize these two points:

• Security includes Authorization.
• Authorization pervades every feature.

In the case of Django, there are multiple layers of au-
thorization testing. We have settings, we have checks

in each view function and we have middleware classs
to perform server-wide checks. All of this is important
and we’ll look at each piece in some detail.

When we define our data model with Django, each
model class has an implicit set of three permissions
(can_add, can_delete and can_change). We can add to
this basic list, if we have requirements that aren’t based
on simple Add, Change, Delete (or CRUD) processing.

Each view function can test to see if the current user
(or user’s group) has the required permission. This is
done through a simple @permission_required decorator
on the relevant view functions https://docs.djangopro-
ject.com/en/1.4/topics/auth/#the-permission-required-
decorator.

There are two small problems with this. First, permis-
sions wind up statically loaded into the database. Sec-
ond, it’s rarely enough information for practical – and
nuanced – problems.

The static database loading means that we have to be
careful when making changes to the data model or the
permissions assigned to groups and users.

We’ll often need to write admin script that deletes and
rebuilds the group-level permissions that we have de-
fined. For example, we may have a “actuaries” group
and a “underwriters” group which have different sets of
permissions on the data model in an application. That
application needs a permission_rebuild admin script
that deletes and reinserts the various permissions for
each group.

The second problem requires a number of additional
design patterns.

Figure 1. The Apache and Django Architecture

http://forgerock.com/what-we-offer/open-identity-stack/openam/
http://forgerock.com/what-we-offer/open-identity-stack/openam/
https://docs.djangoproject.com/en/1.4/topics/auth/#the-permission-required-decorator
https://docs.djangoproject.com/en/1.4/topics/auth/#the-permission-required-decorator
https://docs.djangoproject.com/en/1.4/topics/auth/#the-permission-required-decorator

13/201342

Additional User Features
Django’s pre-1.5 auth.profile module can be used to
provide all of the additional authorization information. For
release 1.5, a customized User model is used instead.

Here’s an example. In a recent project, we eventu-
ally figured out that we have some “big picture” autho-
rizations. Our sales folks realized that some clusters of
application features can be identified as “products” (or
“options” or “features” or something cooler-sounding).
These aren’t smallish things like Django models. They
aren’t largish things like whole sites. They’re intermedi-
ate things based on what customers like to pay for (and
not pay for).

They might be third-party data integration, which re-
quires a more complex contract with pass-through
costs. It might be additional database fields for their
unique business process.

What’s made this easy for us is that we used an “in-
stance-per-customer-organization” model. Each of our
customer organizations has their own Django instance
with their own pool of users, their own database and
their own settings file. Apache is used to redirect the
URL’s for each Django instance.

Each one of our “big picture” features (or products or
options) is tied to a customer organization, which is, in
turn, tied to a Django settings file. The features are en-
abled via contract terms and conditions; the sales folks
would offer upgrades or additional services, and we
would enable or disable features.

(We could have done this with the Django sites mod-
el, but that means that customer data would be commin-
gled in a common database. That was difficult to sell.)

Some of these “features” map directly to Django ap-
plications. Authorization is handled two ways. First, the
application view functions all refuse to work if the user’s
contract doesn’t include the option.

A decorator based on the built-in user_passes_test
decorator simplifies this. The subtlety is that we’re us-
ing relatively static settings data as well as the user’s
group and profile (Listing 1).

For Django 1.5 and newer, the get_profile() isn’t
used, instead a customized User model is used
https://docs.djangoproject.com/en/1.5/topics/auth/
customizing/#extending-user.

The second way to enforce the feature mapping is to
enable or disable the entire application in the custom-
er’s settings file. This is a simple administrative step to
enable an application restart that customer’s mod_wsgi
instance, and let them use their shiny, new web site.

And yes, this is a form of security. It’s not directly relat-
ed to passwords. It’s related to features, functions, what
data users can see and what data users can modify.

Database Feature Enablement
We can create a model for contract terms and condi-
tions. This allows us to map users or groups to specific
features identified in the database. While this can seem
handy, it’s less than ideal. The problem with keeping
configuration data in the database is that it’s data. It’s
not code. In order to map data to processing, we are
often tempted to use a welter of if statements to sort
out what should and should not happen. Adding lots of
if statements to enable and disable features increases
complexity and reduces maintainability. For these rea-
sons, we’d like to minimize the use of if statements.

More Complexity
Sadly, some of the “features” our sales folks identified
are only a small part of a Django application. In one
case, it cut across several applications. Drat. We have
several choices to implement these features.

Option 1 is to use template changes to conceal or re-
veal the feature. This is the closest fit with the way Djan-
go works. The data is available, it’s just not shown un-
less the customer’s settings provides the proper set of
templates on the template search path.

This can also be enforced in the code, also, by mak-
ing the template name dependent on the custom-
er settings. Building the template name in code has
the advantage of slightly simpler unit testing, since no
settings change is required for the various test cases.

name= settings.FEATURE_W_APP1_TEMPLATE_NAME

render_to_response(“app1/{0}.html”.format(name),

 data,

 context_instance=RequestContext(request))

Option 2 is to isolate a simple feature into a single
class and write two subclasses of the feature: an ac-
tive, enabled implementation and a disabled imple-
mentation. We can then configure the enabled or dis-
abled subclass in the customer’s settings.

This is the most Pythonic, since it’s a very common
OO programming practice. Picking a class to instantiate
at run time is simply this:

Listing 1. A decorator based on the built-in user_passes_test

def client_has_feature_x(function,login_url=”/login/”):

 def func_with_check(request):

 if (request.user.logged_in

 and settings.FEATURE_X_ENABLED

 and request.user.get_profile().has_feature_X):

 return function(request)

 else:

 return redirect(

 “{0}?next={1}”.format(login_url, request.

path))

 return func_with_check

https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#extending-user
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#extending-user

en.sdjournal.org 43

PyThoN, WEB SECURITy AND DjANGo

feature_class= eval(settings.FEATURE_X_CLASS_NAME)

feature_x= feature_class()

This is the easiest to test, also, since it’s simple object-
oriented programming.

For those who don’t like eval() a more complex map-
ping can be used.

feature_class = {

 ‘option’: class, ‘option’: class, …

 }[settings.FEATURE_X_CLASS_NAME]

feature_x= feature_class()

Option 3 is to isolate a more complex feature into a
single module and write several versions of this mod-
ule. We can then decide which version to import.

When the feature involves integration of external ser-
vices, this is ideal. For testing purposes, we’ll need to
mock this module. We wind up with three implementa-
tions: active, inactive, and mock.

feature_y = __import__(settings.FEATURE_Y_MODULE,

 globals(), locals(), [], -1)

Now, the selected module is known as feature _ y
throughout the application.

Option 4 is to refactor an application into two applica-
tions: one version with the feature enabled and a nearly
identical version without the feature enabled.

The best way to tackle this option is to write an ab-
stract “super app”. This super app needs a plug-in
method or class for each feature which may (or may
not) be available to a customer. We can create concrete
Django apps which both have a structure like this:

import feature_z_super

class App2_View(feature_z_super.App2_View):

 etc.

The App2 _ View subclass of feature _ z _ super.App2 _

View is a concrete implementation of the abstract
class. All of the features are handled properly.

The idea is that we our customer’s settings will in-
clude the concrete app module. The concrete app mod-
ule will depend on the abstract “super app” code, plus
the specific extensions to either enable feature or work
around the missing feature. When we need to make
common changes, we can change the abstract “super
app” and know that the changes will correctly propagate
to the concrete implementations.

In both cases, it’s very Django to have the application
configured dynamically in the settings file.

Figure 2. Django Processing Pipeline

13/201344

RESTful Services
RESTful web services are slightly different from the de-
fault Django requests. REST requests expect XML or
JSON replies instead of HTML replies. There will be
more than GET or POST requests. Additionally, REST-
ful web services don’t rely on cookies to maintain state.
Otherwise, REST requests are processed very much
like other Django requests.

One school of thought is to provide the RESTful API
as a separate server. The Django “front-end” makes
RESTful requests to a Django “back-end”. This archi-
tecture makes it possible to build Adobe Flex or JavaS-
cript front-end presentations that work with the same
underlying data as the HTML presentation.

Another school of thought is to provide the RESTful
API in parallel with the Django HTML interface. Since
the RESTful view functions and the HTML view func-
tions are part of the same application module, it’s easy
to use unit testing to assure that both HTML and REST
interfaces provide the same results.

In either case, we need authentication on the REST-
ful API. This authentication doesn’t involve a redirect to
a login page, or the use of cookies. Each request must
provide the required information. HTTP provides two
standard forms of authentication: BASIC and DIGEST.

While we can move beyond the standard, it doesn’t
seem necessary.

The idea behind DIGEST authentication is to provide
hashed username and password credentials on an oth-
erwise unsecured connection. DIGEST requires a dia-
log so the server can provide a “nonce” which is hashed
in with username and password. If the client’s hash
agrees with the server’s expectation, the credentials
are good. The “back-and-forth” aspect of this makes it
unpleasantly slow.

When SSL is used, however, then BASIC authentica-
tion works very nicely. BASIC is much easier to imple-
ment because it’s just a username and password sent
in a request header. This means that RESTful requests
must be done through HTTPS and certificates must be
actively managed.

Here’s where middleware fits into the Django pipe-
line. This shows typical HTML-based view functions. A
RESTful interface won’t depend on template rendering.
Instead, it will simply return JSON or XML documents
dumped as text (Figure 2).

It’s easy to use a Django middleware class to strip out
the HTTP Authorization header, parse the username
and password from the credentials and perform a Djan-
go logon to update the request.

Here’s a sample Middleware class (assuming Python
2.7.5). This example handles all requests prior to URL
parsing; it’s suitable for a purely RESTful server. In the
case of mixed REST and HTML, then process_view shold
be used instead of process_request, and only RESTful
views should be authenticated this way. HTML view func-
tions should be left alone for Django’s own authentication
middleware (Listing 2). If you’re using Django 1.5 and Py-
thon 3.2, the base 64 decode is slightly different.

base64.b64decode(auth).decode(“ASCII”)

The ASCII decode is essential because the decoded
auth header will be bytes, not a proper Unicode string.

Note that a password is not stored anywhere. We re-
ly on Django’s password management via a hash and
password matching. We also rely on SSL to keep the
credentials secret.

In the case that you’re using an Open AM identity
management server, this changes very slightly.

Listing 2. Requests prior to URL parsing

class REST_Authentication(object):

 def process_request(request):

 if not request.is_secure():

 return HttpResponse(“Not Secure”, status=500)

 if request.method not in (“GET”, “POST”, “PUT”, “DELETE”):

 return HttpResponse(“Not Supported”, status=500)

 # The credentials are base64-encoded username “:” password.

 auth= request.META[“Authorization”]

 username, password = base64.b64decode(auth).split(“:”)

 user = authenticate(

 username=username, password=password)

 if user is not None:

 if user.is_active:

 login(request, user)

 return None # Continue middleware stack

 return HttpResponse(“Invalid”, status=401)

en.sdjournal.org

What changes is the implementation of the
authenticate() method. You’ll provide your own au-
thentication backend which passes the credentials to
the Open AM server for authentication https://docs.djan-
goproject.com/en/1.5/topics/auth/customizing/#writing-
an-authentication-backend.

Summary
What we’ve seen are several of the squares used in
playing Buzzword Bingo. We’ve looked at “Defense in
Depth”: having multiple checks to assure that only the
right features are available to the right people. Perhaps
the most important thing is this:

Always use a hash of a password. Never use
encryption
We always want to use a trust identity manager. Either
the User model in Django or a good third-party imple-
mentation. We can easily implement Single Sign-on
(SSO) using a third-party identity manager.

If we use the Secure Socket Layer (SSL), then cre-
dentials for RESTful web services are easy to work with.

Django supplies at three levels of authorization con-
trol: group membership, Django settings to select appli-
cations and templates and the middleware processing
pipeline. To these three levels, we can easily add our
own customized settings.

We prefer to rely on Django group memberships and
standard settings. This allows us to tweak permissions
through the auth module. We can implement higher-lev-
el “product” or “feature” authorizations. We have a vari-
ety of design patterns: template selection, class hierar-
chies and class selection, dynamic module imports, and
even dynamic application configuration.

We can use the database. We can create a many-
to-many relationship between the Django Profile model
and a table of license terms and conditions with expira-
tion dates. Or (for Django 1.5) we can extend the User
model to include this relationship. Using the database,
however, must be done carefully, since it often leads to
a confusing collection of if statements.

We should feel confident using Django’s Middleware
Classes to create a layered approach to security. It’s a
simple and elegant way to assure that all requests are
handled uniformly. Django rocks. This makes it easy to
fine-tune the available bits and pieces to match the mar-
keting and sales pitch and the the legal terms and con-
ditions in the contracts and statements of work.

STEVE LoTT
The author has been a software developer for over 35 years.
Most recently, he’s been developing Python applications for
actuaries, including complex data sources, flexible schema
design, and a secure RESTful API.

CYBER SECURITY

INFORMATIONPROTECTION

CORPORATE

CORPORATE

TECHNOLOGY

RISK ATTACKCOMPLEXITY THREAT

INTELLIGENCE CONTROL COMPLEXITY

INTELLIGENCE ELECTRONICCONTROL

CYBER SECURITYELECTRONIC

PROTECTIONINTELLIGENCE

CORPORATETECHNOLOGY

INTELLIGENCE

DATA ANALYTICS

FORENSICS

INTRUSION

DATABASE ELECTRONIC CONTROL

COMPLEXITYCOMPLEXITY THREAT

THREAT

INFORMATION COMPLEXITYELECTRONIC

DATA RECOVERY
INFORMATIONCOMPLEXITY ELECTRONIC

CYBER SECURITYATTACK THREAT

TECHNOLOGYINFORMATIONRISK

TECHNOLOGYINFORMATION RISK

INTELLIGENCECOMPLEXITY THREAT

INVESTIGATIONS

eDISCOVERY

TECHNOLOGY

CYBER SECURITYELECTRONIC

PROTECTIONINTELLIGENCE

INTELLIGENCE

DATABASECOMPLEXITY THREAT

THREAT

INTELLIGENCECOMPLEXITY THREAT

Are you
prepared?

kpmg.ca/forensic

© 2013 KPMG LLP, a Canadian limited liability partnership and a member firm of the KPMG network of independent
member firms affiliated with KPMG International Cooperative (“KPMG International”), a Swiss entity. All rights reserved.

https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#writing-an-authentication-backend
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#writing-an-authentication-backend
https://docs.djangoproject.com/en/1.5/topics/auth/customizing/#writing-an-authentication-backend

13/201346

Building a Console 2-player
Chess Board Game in
Python
Python is a very powerful language particularly for writing
server-side backend scripts, although one can also use it
for web development tasks through the Django framework
(https://www.djangoproject.com) and it is gaining popularity
in that field as well. A very thorough and complete
documentation, the huge variety of libraries and open-source
projects – easily installed with the package managers (https://
pypi.python.org/pypi/pip and https://pypi.python.org/pypi/
setuptools) and the huge knowledge base in q&A sites like
StackOverflow (http://stackoverflow.com/questions/tagged/
python) and mailing lists are among the main characteristics to
which the widespread use of Python can be attributed to.

W e will be building a console-based 2-play-
er chess board using Python. For those not
familiar with the game of chess you should

probably first take a quick glance in the Wikipedia ar-
ticle (https://en.wikipedia.org/wiki/Chess), before diving
into any code details. You can find the code on Github
(https://github.com/georgepsarakis/python-chess-
board) as well as instructions on how to get it and run-
ning it. For any questions or feedback feel free to open
an issue (https://github.com/georgepsarakis/python-
chess-board/issues/new – you will need a Github ac-
count to do this though). The code is packed in a single
file to make it easier to find and view alternate code seg-
ments. In addition, I have included several comments to
make it easier to walk yourself through the code. The
script is tested on Linux so no guarantees can be made
for running on a Windows machine (anyone willing to
test it and make any necessary modifications is more
than welcome to make a pull request!).

The concept is pretty simple, as stated in the READ-
ME.md as well:

• You enter the usernames of the two players.
• White and Black are randomly assigned to each

player.
• Timer starts for White since they play first.
• Once you hit “Enter”, you will be prompted to enter

a move following the convention

PIECE POSITION -> TARGET SQUARE for exam-
ple B2 -> B3 will move the white pawn one posi-
tion forward.

• The move is checked and
• if approved then the new board state is printed and

timer starts for the other player.
• if rejected timer restarts for the current player and a

new move is requested.
• Process repeats.

object Modeling
Quite briefly, Chess requires a board consisting of 8x8
squares, 16 White pieces and 16 Black pieces. Each

https://www.djangoproject.com/
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/setuptools
https://pypi.python.org/pypi/setuptools
http://stackoverflow.com/questions/tagged/python
http://stackoverflow.com/questions/tagged/python
https://en.wikipedia.org/wiki/Chess
https://github.com/georgepsarakis/python-chess-board/issues/new
https://github.com/georgepsarakis/python-chess-board/issues/new

en.sdjournal.org 47

BUILDING A CoNSoLE 2-PLAyER ChESS BoARD GAME

player is assigned to a color, quite similarly to a general
leading an army. Piece types are (in parentheses is the
number of items in each set):

• King (x1)
• Queen (x1)
• Bishop (x2)
• Knight (x2)
• Rook (x2)
• Pawn (x8)

After some brief consideration, we need 4 objects to
describe the problem at hand in a simplistic manner.

Modeling Pieces
Pieces require the following properties to describe their
behavior:

• Ability for diagonal, straight, L-shaped movement
in the board. L-shaped (or Gamma-shaped from
the greek letter Γ) movement is performed only by
Knights.

• Ability to pass over other pieces in their movement
path. Actually, only Knights are allowed to do this.

• Limitation on the number of squares that can be tra-
versed in each move. Pawns and Kings can move
one square distance, Knights are making stan-
dard L-shaped moves and the rest of the pieces can
move freely as long their path is unobstructed.

• The color of the piece (Black or White).
• The type, which can be any of 'Rook', 'Knight',

'Pawn', 'King', 'Queen', 'Bishop'.

These are the only information we need to construct
an instance of a chess piece. Basically the type of the

Listing 1. Piece Class

class Piece(object):

 ‘’’

 Object model of a chess piece

 We keep information on what kind of movements the

piece is able to make (straight,

diagonal, gamma),

 how many squares it can cross in a single move, its

type (of course) and the color

(white or black).

 ‘’’

 DirectionDiagonal = False

 DirectionStraight = False

 DirectionGamma = False

 LeapOverPiece = False

 MaxSquares = 0

 Color = None

 Type = None

 AvailableTypes = [‘Rook’, ‘Knight’, ‘Pawn’, ‘King’,

‘Queen’, ‘Bishop’]

 Types_Direction_Map = {

 ‘Rook’ : [‘straight’],

 ‘Knight’ : [‘gamma’],

 ‘Pawn’ : [‘straight’],

 ‘King’ : [‘straight’, ‘diagonal’],

 ‘Queen’ : [‘straight’, ‘diagonal’],

 ‘Bishop’ : [‘diagonal’]

 }

 Types_MaxSquares_Map = {

 ‘Rook’ : 0,

 ‘Pawn’ : 1,

 ‘King’ : 1,

 ‘Queen’ : 0,

 ‘Bishop’ : 0,

 ‘Knight’ : -1,

 }

 def __init__(self, **kwargs):

 ‘’’ Constructor for a new chess piece ‘’’

 self.Type = kwargs[‘Type’]

 ‘’’ Perform a basic check for the type ‘’’

 if not self.Type in self.AvailableTypes:

 raise Exception(‘Unknown Piece Type’)

 x(1)

 self.Color = kwargs[‘Color’]

 directions = self.Types_Direction_Map[self.Type]

 ‘’’ Check allowed directions for movement ‘’’

 self.DirectionDiagonal = ‘diagonal’ in directions

 self.DirectionGamma = ‘gamma’ in directions

 self.DirectionStraight = ‘straight’ in directions

 ‘’’ Determine if there is a limitation on the

number of squares per move ‘’’

 self.MaxSquares = self.Types_MaxSquares_Map[self.

Type]

 ‘’’ Only Knights can move over other pieces ‘’’

 if self.Type == ‘Knight’:

 self.LeapOverPiece = True

 def __str__(self):

 ‘’’ Returns the piece’s string representation:

color and type ‘’’

 return self.Color[0].lower() + self.Type[0].

upper()

13/201348

piece actually determines the rest of the properties ex-
cept for the color of course which is explicitly set in re-
spect to which piece set the piece belongs (Listing 1).

As we can see, the constructor (__init__ meth-
od) receives the Type and Color parameters through
the **kwargs keyworded argument list (you can read
more on keyworded and non-keyworded variable
length argument lists on this blog article – http://www.
saltycrane.com/blog/2008/01/how-to-use-args-and-
kwargs-in-python/).

Modeling the board Squares
The board squares are described by their position in
the board, row and column. Now, instead of adding the
position properties to the Piece class, which is possible
but would make things far more complicated, we add a
Piece property to the Square class which stores an in-
stance of the Piece class.

As we observe, the constructor simply receives the
position information, in zero-based index format. That
means that we convert column notation A..H to 0..7
and rows from 1..8 to 0..7 as well as a global conven-
tion when internally referring to rows and columns. This
makes it easier to handle in loops. There are four static
methods which handle these conversions:

• row_index – receives a row index and returns the
index according to our convention

• column_index – ascii_uppercase is a string con-
taining uppercase ASCII characters sorted alpha-
betically. Thus using the index method returns the
position of the letter of the string.

• index_column – inverse of column_index
• position – returns the string representation of a

square position in chess notation for example A1

Static methods in Python are denoted with the @
staticmethod decorator and we do not pass the in-
ternal class instance variable self. If you happen
to read more on decorators (and I strongly advise
you to do) you can take a look at the manual entry
– http://docs.python.org/2/glossary.html#term-dec-
orator and the Python Wiki – http://wiki.python.org/
moin/PythonDecorators.

We are also using the __str__ special method of Py-
thon objects, which returns a string with what we wish
to be the string representation of an object. The spe-
cific method is not used in our code, but is a good point
to explain the meaning of the __str__ special method
since we will be using it heavily further on. There are a
number of special methods regarding object represen-
tation, comparisons between instances etc and if you
want to read more on the subject I would strongly refer
you to the manual (http://docs.python.org/2/reference/
datamodel.html#special-method-names).

Creating the board
Our board is consisted of a collection of square object
instances. We choose to represent this with a diction-
ary, where the keys are the square coordinates in chess
notation (for example A1) and the values are Square
object instances. This will make lookups easier than
storing the squares in a list (or a list of lists where each
entry of the outer list is a column and the referred list
represents a row or vice versa).

We could also hard-code the setup of the board but
where is the fun in that? Apart from our laziness and
distaste for hard-coded solutions (which in fact can
bring much trouble in the future), giving it some broad-
er thinking, it would be better to create our own set-
up format and mini-parser conventions so that a more
generic solution is constructed; this will facilitate pos-
sible “Save Game” and “Load Game” features that we
may want to add to our game in the future. We will be
using a dictionary whose keys are piece types and
values are strings containing the square positions that
are to be placed.

• Black and White positions are separated with a “|”
character

• Ranges use a “:” separator. For example, for the ini-
tial setup, to set our pawns we want the entire sec-
ond row occupied by white pawns. Thus the nota-
tion in https://github.com/georgepsarakis/python-
chess-board/blob/master/chessboard.py#L165.
Ranges can be either vertical or horizontal, not
mixed, so the row or the column must be constant.

• Distinct positions use a “,” separator, for exam-
ple for the Knight positioning (https://github.com/
georgepsarakis/python-chess-board/blob/master/
chessboard.py#L168)

When instantiated, the board object, just needs to
create the square objects, so the constructor is re-
sponsible for instantiating the Square objects and
placing them accordingly in the Squares diction-
ary. The setup method uses the private method _ _

parse _ range (Python’s private methods are some-
what different from other languages since they re-
main implicitly accessible for public calls – you can
read more here http://www.diveintopython.net/ob-
ject_oriented_framework/private_functions.html)
which receives a string and returns a list of tuples
with the square coordinates and finally pieces are
set on the square positions on the board. Quite sim-
ply, another method called add_piece allows us to
construct and attach a Piece instance to one of the
board’s squares.

The most complicated and useful method is the __
str__ special method since it returns the string repre-
sentation of the board’s current state, which of course

http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
http://www.saltycrane.com/blog/2008/01/how-to-use-args-and-kwargs-in-python/
http://docs.python.org/2/glossary.html#term-decorator
http://docs.python.org/2/glossary.html#term-decorator
http://wiki.python.org/moin/PythonDecorator
http://wiki.python.org/moin/PythonDecorator
http://docs.python.org/2/reference/datamodel.html#special-method-names
http://docs.python.org/2/reference/datamodel.html#special-method-names
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L165
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L165
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L168
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L168
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L168
http://www.diveintopython.net/object_oriented_framework/private_functions.html
http://www.diveintopython.net/object_oriented_framework/private_functions.html

en.sdjournal.org 49

BUILDING A CoNSoLE 2-PLAyER ChESS BoARD GAME

is essential to the gameplay. Our board is drawn with
these components:

• A row at the top and the bottom containing the col-
umn names (A-H).

• Each row starts and ends with the row number.
• Squares are enclosed with “|” and “-” characters.
• Pieces are represented with their color’s initial letter in

lowercase and the initial letter of the piece type in up-
percase. For example a White Rook becomes wR.

We start by looping rows inversely since we are
printing top-to-bottom and we want White pieces to
be in the bottom of the board always. Each square
while building a row is separated with the “|” char-
acter and we print a row consisting of “-” characters
with the full row length which serves as a separa-
tor. Just a reminder here: in Python we can produce
a string by repeating another string N times, simply
multiplying it with an integer value. Our board now
looks like this: Figure 1.

Finally the Game class
The Game class is a class that contains actions that
refer to the gameplay. Properties include the players,
a variable that holds a Board instance and a diction-
ary named Timers for storing timer info for each user.
Instantiating a Game object randomly assigns colors to
users (with the randint function) and also instantiates
and sets up a board for our game. The timer display re-
quires a helper function, the time_format method which
displays time elapsed for the current user in human
readable format (MM:SS).

The way the timer works is pretty straightforward;
entering the while-loop and checking if the second is
changed (https://github.com/georgepsarakis/python-
chess-board/blob/master/chessboard.py#L312) it prints
the time elapsed from the start of game for the user.
Now the user needs a way of stopping the timer. For
prompting the user for input but with a timeout we are
using the select function of the Python build-in select
module (you can read more on this module in the man-
ual http://docs.python.org/2/library/select.html). We set

the timeout to be one second and contents are available
in the r variable. Just by hitting “Enter” (https://github.
com/georgepsarakis/python-chess-board/blob/master/
chessboard.py#L334) the timer stops and current time
is stored in the Timers dictionary under the key of the
current user.

The largest portion of game logic resides in the move_
piece method. This method begins by requesting user
input; a move in our convention requires specifying the
source square with the piece in chess notation and the
target square where it should move. These two posi-
tions are separated by a dash and greater sign charac-
ters (loosely resembling an arrow). For example “B2-
>B3” will move the white pawn from B2 to B3. If a user
enters the string “quit” the game terminates.

In order to perform the move, a number of checks must
be made and either the move is approved or rejected. In
the first case, the game modifies the board accordingly
and starts the timer for the other player, waiting for the
next move. The following checks are performed:

• Whether the piece square is actually occupied and
if occupied if it belongs to the user.

• If the move is in a straight line, a diagonal line or an
L-shaped (gamma-shaped) pattern. These checks
require calculation of the absolute distance be-
tween starting and target rows and columns (https://
github.com/georgepsarakis/python-chess- board/
blob/master/chessboard.py#L373 and https://github.
com/georgepsarakis/python-chess-board/blob/mas-
ter/chessboard.py#L374). Straight line movement
is easily detected if the starting and target columns
are the same or starting and target rows are equal;
in the first case the piece moves in a vertical line on
the board otherwise in a horizontal. The condition for
diagonal moves is that the absolute column and row
distances must be equal. At last, L-shaped moves
(valid only for Knights) are detected if either a row or
column distance is equal to 2 and the other coordi-
nate difference is equal to 1. So if we have a row dis-
tance of 2, then the column distance must be 1 also.

• Checking if the piece’s path is blocked by oth-
er pieces. This check is performed only if the
LeapOverPiece property of the moving piece is
False. We must first construct the list of squares
that must be crossed by the piece in order to ac-
complish the move, thus we distinguish our cas-
es in respect to the type of movement; whether it
is happening on a straight line (https://github.com/
georgepsarakis/python-chess-board/blob/master/
chessboard.py#L402) or a diagonal (https://github.
com/georgepsarakis/python-chess-board/blob/
master/chessboard.py#L418). L-shaped moves are
performed by Knights which incidentally can leap
over pieces as well.Figure 1. The board with all the pieces in its initial state

https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L312
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L312
http://docs.python.org/2/library/select.html
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L334
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L334
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L334
https://github.com/georgepsarakis/python-chess-
https://github.com/georgepsarakis/python-chess-
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L373
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L373
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L374
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L374
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L374
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L402
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L402
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L402
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L418
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L418
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L418

• Having the path that outlines the move, we can first
implement the check about the permitted number
of squares for this piece (https://github.com/george-
psarakis/python-chess-board/blob/master/chess-
board.py#L424).

• Looping over the path we check if any of the
squares is already occupied by another piece
(https://github.com/georgepsarakis/python-chess-
board/blob/master/chessboard.py#L427).

• We must also check if the target square is occu-
pied by a piece which belongs to the current user
(https://github.com/georgepsarakis/python-chess-
board/blob/master/chessboard.py#L432).

Finally using the set_piece of the Square class we
change the piece’s current square Piece property to
None and the target square has now attached to it the
moved piece, thus completing our move. The next step
is to change the player. The method returns a tuple con-
sisting of a Boolean value which is False if the move is
rejected and a string containing an error message in-
forming the user why the move cannot be performed.

The string representation of the game is displayed
with the __str__ special method. It uses the board’s
string representation along with two extra lines printing
the usernames. The format method of the string class is
used in order to center align the usernames (format is
the preferred method of string formatting with variable
substitutions and alignment – http://docs.python.org/2/
library/string.html#string-formatting).

Putting it all together
The game starts when an instance of the Game class
is created (https://github.com/georgepsarakis/python-
chess-board/blob/master/chessboard.py#L475). The
argparse module (http://docs.python.org/dev/library/ar-
gparse.html) provides us with an easy way to pass com-
mand line parameters to our scripts; here we can pass
the usernames via the --user1 and --user2 parameters.
We could also for example, pass the maximum number
of seconds for the timer, so once a player exceeds that
time of playing, he loses.

After the game is created, a printout of the board is
given in its initial state and the players’ alternation works
with a simple while-loop:

• The timer is started for the current player.
• A move is requested via the move_piece method,

which we analyzed previously.

• If the move is accepted the new state of the board
is printed and steps 1 & 2 are performed for the
other user.

• If the move is rejected the player is prompted with a
message to play again and the process repeats for
the same player by repeating steps 1 & 2 (new loop).

• Process repeats until a user quits.

Summary
In this tutorial we have walked through the Python code
that builds a simplistic version of a chess game be-
tween two human players. We explored some aspects
of object modeling and gained some experience on cre-
ating and interacting with Python objects. Dealing with
user text input, displaying the board on the console and
displaying the timer were some of the interface difficul-
ties while outlining the game process, setting up the
board with the pieces and validating user moves were
amongst the algorithmic challenges we faced here. Of
course, this is not a complete game implementation but
rather a working example; it would definitely require
much more error handling and validations, as well as
incorporating all the chess rules. Some thoughts on ex-
panding the code can be:

• Adding a --timer parameter and restrict the user’s
game time to this number of seconds.

• Keeping history of the moves and display lost piec-
es for each user.

• Adding check and checkmate detection.
• Play with computer feature (!) – building a chess

engine is very difficult unfortunately.

GEoRGE PSARAkIS
George Psarakis studied Mechanical Engineering and com-
pleted an MSc in Computational Mechanics. He has been
working intensively with PHP, MySQL, Python & BASH on
Linux machines since 2007 to develop efficient backend
scripts, monitoring tools, Web administration panels for in-
frastructure purposes and performing server administration
tasks. His interests include NoSQL databases, learning new
languages, mastering Python, PHP, MySQL and starting new
projects on Github (https://github.com/georgepsarakis). You
can find him on Twitter @georgepsarakis.

https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L424
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L424
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L424
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L427
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L427
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L432
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L432
http://docs.python.org/2/library/string.html#string-formatting
http://docs.python.org/2/library/string.html#string-formatting
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L475
https://github.com/georgepsarakis/python-chess-board/blob/master/chessboard.py#L475
http://docs.python.org/dev/library/argparse.html
http://docs.python.org/dev/library/argparse.html
https://github.com/georgepsarakis

13/201352

Write a Web App and Learn
Python
Background and Primer for Tackling the Django Tutorial

While many resources exist online for anyone interested in taking
on Python, as with many programming languages, the best way to
get started is often by getting your feet wet on an actual project.
Over the past 15 years, I have been involved in many aspects of
web development from building out internal intranet applications
on Microsoft ASP to writing Perl and PHP for large web sites.

Building off past experiences as CTO for various
New York based startups and my most recent
effort to launch a cloud infrastructure solution for

African startups headquartered in Nairobi, Kili.io, I have
become a big proponent of Python- by far one of the
easiest programming languages to write, read and ex-
tend with superior speed.

Python is an extremely flexible language that allows
students and serious programmers to accomplish di-
verse tasks varying from SMS gateways to web appli-
cations to basic data visualization. Existing resources
on Python that new and experienced programmers can
turn to include: Learn Python the Hard Way by Zed Shaw
(http://learnpythonthehardway.org/), educational sites
like Udacity (https://www.udacity.com/course/cs101) and
the Python.org website itself which has a thorough tuto-
rial (http://docs.python.org/3.3/tutorial/) and some of the
best overall documentation (http://docs.python.org/3.3/
reference/index.html) available for any programming lan-
guage. However, when speaking to students trying to get
started with the language, a common complaint is that
available command line tutorials do not always provide
concrete and detailed recommendations for initial setup.
This article aims to introduce the most widely used frame-
work for Python web development, Django, which can
complement what is already online, (https://docs.django-
project.com/en/1.5/intro/tutorial01/) and provide practical
advice to getting you started on your own project.

What’s a Framework?
A ‘framework’ is a set of tools and libraries that facili-
tates the development of a certain type of application.

Web frameworks facilitate the development of web ap-
plications by allowing languages like Python or Ruby to
take advantage of standard methods to complete tasks
like interacting with HTTP payloads, or tracking users
throughout a site, or constructing basic HTML pages.
Leveraging this scaffolding, a developer can focus on
creating a web application instead of doing a deep dive
on HTTP internals and other lower-level technologies.

While the dominant web framework for the Ruby lan-
guage is Rails, Python has many different web frame-
works including Bottle, web.py, and Flask with the vast
majority of Python web applications being developed
right now using the mature framework Django. Django
is a full-stack web framework which includes an Object
Relational Mapper (so you can use Python syntax to
access values in a relational database), a template ren-
derer (so you can insert variables into an HTML page
that will then be populated before the page is sent to the
browser), and various additional utilities like date pars-
ers, form handlers, and cache helpers.

Learning Django via their tutorial can be one of the
easiest ways to get started with Python and really isn’t
much more difficult. I advise this approach to all people
new to Python and think it’s the best way to get going.

Getting Started
Before starting this tutorial, you should try to have a cur-
rent version of either Mac OS X or Ubuntu Linux. These
are the easiest operating systems on which to devel-
op for the web and the most well supported in terms of
documentation and setup guides. If you get lost, you’ll
be much happier to be on one of these two platforms.

http://learnpythonthehardway.org/
https://www.udacity.com/course/cs101
http://docs.python.org/3.3/tutorial/
http://docs.python.org/3.3/reference/index.html
http://docs.python.org/3.3/reference/index.html
https://docs.djangoproject.com/en/1.5/intro/tutorial01/
https://docs.djangoproject.com/en/1.5/intro/tutorial01/

TACkLING ThE DjANGo TUToRIAL

If you’re a fan of another Linux distribution, you shouldn’t
have too many problems. If you want to use Windows
though, while doable, this is certainly not advised. Not
all Python libraries are easily installed on Windows and
since most Python developers use OS X or Linux, you’ll
run into fewer surprises as you go along. If you have Win-
dows and don’t want to dual-boot your machine, get Vir-
tualBox (https://www.virtualbox.org/) and install Ubuntu
13.04 inside a virtual machine. The software is free and
widely used and running Ubuntu, inside of Windows, is
one of the most common scenarios for Virtual Box.

A Word on Text Editors
In order to write a program, you’re going to need a text
editor. People have been using vi (or vim) and emacs
for decades with great success. If you are comfortable
with these editors, great. I mostly use vi when on the
server and use Sublime Text (http://www.sublimetext.
com/) on my laptop. More powerful editors called Inte-
grated Development Environments (IDEs) also exist like
PyDev (Eclipse – http://pydev.org/), IDLE (included with
Python – http://docs.python.org/2/library/idle.html), and
PyCharm (http://www.jetbrains.com/pycharm/). IDEs can
interpret the code you write and suggest many fixes and
solutions to your programming needs (including links to
documentation). Some people find this overbearing and

slow; others really benefit from it. A brief overview and set
of tutorials on Sublime, my preferred and middle of the
road text editor, can be found here (https://tutsplus.com/
course/improve-workflow-in-sublime-text-2/).

Initial Steps & Installing Package Managers
The first thing you need to do in order to get started is to
create a development folder in your home directory to
hold all of your related work and projects. I like to have
a folder called dev/ in my home directory. As a first step
for this basic best practice, open up the terminal and
type cd to get to your home folder and then mkdir -p dev
(the -p exits silently in case you already have a dev fold-
er). Then type cd dev to get to your new working folder.

If you’re on a mac, type brew. Since that probably
won’t work on the first try, follow the installation instruc-
tions at http://brew.sh/. On Ubuntu (or any Debian-
based system), you’ll type apt-get or aptitude at the
command line in order to install software. These pack-
age managers facilitate the installation of pretty much
any open source software you could ever want – and
it takes care of dependencies so if one package (like
Django) requires another one to be on the system as a
dependency (like Python), aptitude or brew will install
both of the packages automatically. RPM is the pack-
age manager for Red Hat-related distributions.

a d v e r i s e m e n t

https://www.virtualbox.org/
http://www.sublimetext.com/
http://www.sublimetext.com/
http://pydev.org/
http://docs.python.org/2/library/idle.html
http://www.jetbrains.com/pycharm/
https://tutsplus.com/course/improve-workflow-in-sublime-text-2/
https://tutsplus.com/course/improve-workflow-in-sublime-text-2/
http://brew.sh/

Downloading and Installing Python
Operating system-level package managers like Apti-
tude and Brew help install software like Python itself,
but if you want to install Python libraries, you will need
to use pip, the Python installer. Once you have your
package managers installed, you can install python by
simply typing brew install python or apt-get install
python which will give you python as well as the pip in-
staller. If you have trouble, different installation methods
for installing pip can be found here (http://www.pip-in-
staller.org/en/latest/installing.html).

And Django?
Once Python and pip are installed, you can look at the
Python Package Index for all the different packages
available to install. Installing Django from here is as
easy as typing pip install Django into the terminal.
More information can be found in the docs (https://docs.
djangoproject.com/en/1.5/topics/install/), but installing
via pip should work just fine.

Should I really be installing these Python
libraries globally?
Installing development libraries globally can cause
headaches to a developer working on many different
projects. One of the great disadvantages of libraries
that are globally available is that when you have a client
whose production system is on Django 1.4 and anoth-
er one whose production system is on Django 1.5, you
have to pick one for your system and hope problems
with compatibility are not an issue.

The solution to this problem is a package called vir-
tualenv (http://www.virtualenv.org/en/latest/), which let’s
you set up complete Python environments inside of fold-
ers so that a developer can run with different versions of
libraries on different projects. This solution has proven
so successful that there’s now a workflow tool built to
use it called virtualenvwrapper (http://virtualenvwrap-
per.readthedocs.org/en/latest/). While both of these are

usually important to the professional Python developer,
they are not always critical until you’re working on a full-
scale production project.

And what about a Database?
A database,the piece of software that holds onto all
of your data, is critical for any Django project’ s back-
end. MySQL and PostgreSQL are popular and the most
widely used open source relational databases around,
but can be harder to setup and maintain for a beginner.

The simplest database available and one I often rec-
ommend is called SQLite. It runs directly off of files
on your home directory and can be installed through
the Package Managers above by typing brew install
sqlite (or apt-get install sqlite)

Final Thoughts
The above information is not meant to be all en-com-
passing, but hopefully provides some basic information
and background on getting started with Python and the
Django Tutorial. Often the best resource for getting fur-
ther into online tutorials is experimenting with project
related tasks and peer advice for when you get stuck.
Having an easily accessed community of support at
your fingertips is also one of the best things about Py-
thon by far and you should feel free to post comments
and questions to... at...

Lastly, for any new or longtime Python enthusiasts,
I’m happy to respond to emails, IMs and coffees if you
ever make it to Nairobi.

Hopefully you now have a background on how to get
started with Python with the Django tutorial. So, get to
it and write in with any questions you have so we can
help you out.

ADAM NELSoN

http://www.pip-installer.org/en/latest/installing.html
http://www.pip-installer.org/en/latest/installing.html
https://docs.djangoproject.com/en/1.5/topics/install/
https://docs.djangoproject.com/en/1.5/topics/install/
http://www.virtualenv.org/en/latest/
http://virtualenvwrapper.readthedocs.org/en/latest/
http://virtualenvwrapper.readthedocs.org/en/latest/

13/201356

Efficient Data and Financial
Analytics with Python

In this article, we will be talking about first steps in Python
programming, we will show you the way how to start and
make it as easy as possible. you will see how user friendly
Python is and why it makes it so much popular in the world of
programmers.

The data and financial analytics environment has
changed dramatically over the last years and it
is still changing at a fast pace. Among the major

trends to be observed are:

• big data: be it in terms of volume, complexity or ve-
locity, available data is growing drastically; new
technologies, an increasingly connected world,
more sophisticated data gathering techniques and
devices as well as new cultural attitudes towards
social media are among the drivers of this trend

• real-time economy: today, decisions have to be
made in real-time, business strategies are much
shorter lived and the need to cope faster with the
ever increasing amount and complexity of decision-
relevant data steadily increases

Decision makers and analysts being faced with such
an environment cannot rely anymore on traditional ap-
proaches to process data or to make decisions. In the
past, these areas where characterized by highly struc-
tured processes which were repeated regularly or
when needed.

For example, on the data processing side, it was
and it is still quite common to transfer operational data

into separate data warehouses for analytics purpos-
es by executing weekly or monthly batch processes.
Similarly, with regard to decision making, having time
consuming, yearly strategy and budgeting processes
seems still common practice among the majority of
larger companies.

While these approaches might still be valid for certain
industries, big data and the real-time economy demand
for much more agile and interactive data analytics and
decision making. One extreme example illustrating this
is high-frequency trading of financial securities where
data has to be analyzed on a massive scale and deci-
sions have to be made sometimes in milliseconds. This
is only possible by making use of high performance
technology and by applying automated, algorithmic de-
cision processes. While this might seem extreme for
most other business areas, the need for more interac-
tive analytics and faster decisions has become a quite
common phenomenon.

Typical Data-Related Problems
Corporations, decision makers and analysts acknowl-
edging the changing environment and setting out to do
something about it, generally face a number of problems:

• sources: data typically comes from different sourc-
es, like from the Web, from in-house databases or
it is generated in-memory, e.g. for simulation pur-
poses

• formats: data is generally available in different for-
mats, like SQL databases/tables, Excel files, CSV
files, arrays, proprietary formats

What you should have
• Desktop PC or notebook with modern browser (Firefox,

Chrome, Safari)
• Free account for Web-based analytics environment Wa-

kari (http://www.wakari.io)

http://www.wakari.io/

en.sdjournal.org 57

FINANCIAL ANALyTICS WITh PyThoN

• structure: data typically comes differently struc-
tured, be it unstructured, simply indexed, hierarchi-
cally indexed, in table form, in matrix form, in multi-
dimensional arrays

• completeness: real-world data is generally incom-
plete, i.e. there is missing data (e.g. along an index)
or multiple series of data cannot be aligned correct-
ly (e.g. two time series with different time indexes)

• conventions: for some types of data there a many
“competing” conventions with regard to formatting,
like for dates and time

• interpretation: some data sets contain information
that can be easily and intelligently interpreted, like a
time index, others not, like texts

• performance: reading, streamlining, aligning, analyz-
ing – i.e. processing – (big) data sets might be slow

In addition to these data-oriented problems, there typi-
cally are organizational issues that have to considered:

• departments: the majority of companies is orga-
nized in departments with different technologies,
databases, etc., leading to “data silos”

• analytics skills: analytical and business skills in
general are possessed by people working in line
functions (e.g. production) or administrative func-
tions (e.g. finance)

• technical skills: technical skills, like retrieving data
from databases and visualizing them, are generally
possessed by people in technology functions (e.g.
development, systems operations)

In the past, companies have spent huge amounts of
money to cope with these problems around ever in-
creasing data volumes. In 2011, companies around the
world spent an estimated 100 bn USD on data center
infrastructure and 24 bn USD on database software
(Source: Gartner Group as reported in Bloomberg Busi-
nessweek, 2 July 2012, “Data Centers – Revenge of the
Nerdiest Nerds”). This illustrates that improvements in
data management and analytics can pay off quite well.
Small cost savings, faster implementation approaches
or more efficient data analytics processes can have a
huge impact on the bottom line of any business.

Python as Analytics Environment
Getting Started with Python
In recent years, Python has positioned itself more and
more as the environment of choice for efficient data and
financial analytics. A fundamental stack for data analyt-
ics with Python shall comprise at least.

• Python (http://www.python.org),
• NumPy (http://www.numpy.org),
• SciPy (http://www.scipy.org),

• matplotlib (http://www.matplotlib.org),
• pandas (http://pandas.pydata.org) and
• PyTables (http://www.pytables.org)

In addition, the powerful interactive development en-
vironment IPython (http://www.ipython.org) makes de-
velopment and interactive analytics much more conve-
nient and productive. All code presented is in the fol-
lowing is Python 2.7.

However, you will need in general additional libraries
such that it is best to install a complete scientific Python
distribution like Anaconda (www.continuum.io/anacon-
da) or to use a pre-configured, browser-based analytics
environment like Wakari (http://www.wakari.io).

Addressing some Typical Problems
Before we go into some specific examples, the library
pandas shall be highlighted as a useful tool to cope with
typical problems regarding available data. pandas can,
among others, help with the following issues:

• sources: pandas reads data directly from differ-
ent data sources such as SQL databases or JSON
based APIs

• formats: pandas can process input data in different for-
mats like CSV files or Excel files; it can also generate
output in different formats like CSV, HTML or JSON

• structure: pandas strengths lies in structured data
formats, like time series and panel data

• completeness: pandas automatically deals with
missing data in most circumstances, e.g. comput-
ing sums even if there are a few or many “not a
number”, i.e. missing, values

• conventions/interpretation: for example, pandas
can interpret and convert different date-time for-
mats to Python datetime objects and/or timestamps

• performance: the majority of pandas classes, meth-
ods and functions is implemented in a perfor-
mance-oriented fashion making heavy use of the
Python/C compiler Cython (http://www.cython.org)

pandas is a canonical example for Python being an ef-
ficiency driver for data analytics (For more details re-
fer to the book McKinney, Wes (2012): Python for Da-
ta Analysis. O’Reilly). First, it is open source and free
of cost. Second, through a high level programming ap-
proach with built-in convenience functions it makes
writing and maintaining code much faster and less
costly. Third, it shows high performance in many disci-
plines, reducing execution speeds for typical analytics
tasks and therewith time-to-insights.

pandas itself uses NumPy arrays as the basis build-
ing block. It also tightly integrates with PyTables for data
storage and retrieval. All three libraries are illustrated by
specific examples in what follows.

http://www.python.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.matplotlib.org/
http://pandas.pydata.org/
http://www.pytables.org/
http://www.ipython.org/
http://www.continuum.io/anaconda
http://www.continuum.io/anaconda
http://www.wakari.io/
http://www.cython.org/

13/201358

Analytics Examples from Finance
Two examples from finance show how efficient Py-
thon can be when it comes to typical financial analytics
tasks. The first is the implementation of a Monte Carlo
algorithm, simulating the future development of a stock
price. The second is the analysis of two historical stock
price time series.

Monte Carlo Simulation
Not only in finance, but in almost any other science, like
Physics or Chemistry, Monte Carlo simulation is an im-
portant numerical method. In fact, it is among the top 10
most important numerical algorithms of the 20th century
(Cf. SIAM News, Volume 33, Number 4).

A typical financial analytics task is to simulate the evo-
lution of the price of a company’s stock over time. This
could be necessary, for example, in the context of the
valuation of an option on the stock or the estimation of
certain risk measures. Assuming that the stock price S

follows a geometric Brownian motion, the respective
stochastic differential equation (SDE) is given by

dS t=rS t dt +σS t dZ t

where Z is a Brownian motion. To simulate the SDE,
we use the discretization

 S t=S t−Δt exp((r−0.5σ2)Δt+σ√Δt zt)
where z is a standard normally distributed random

variable and it holds 0<t≤T with T the final time horizon
(For details, refer to the book Hilpisch, Yves (2013): De-
rivatives Analytics with Python. Visixion GmbH, http://
www.visixion.com).

To get mathematically reliable results, a high number
I of simulated stock price paths in combination with a
fine enough time grid is generally needed. This makes
the Monte Carlo simulation approach rather compute
intensive. For one million stock price paths with 50 time
intervals each, this leads to 50 million single computa-
tions, each involving exponentiation, square roots and
the draw of a (pseudo-)random number. The following
is a pure Python implementation of the respective sim-
ulation algorithm, making heavy use of lists and for-
loops (Listing 1).

The execution of the script yields the following output:

Absolute Log Return 0.050

Duration in Seconds 115.589

The absolute log return over one year is correct with
5%, so the discretization obviously works well. The ex-
ecution takes almost 2 minutes in this case.

Although the Monte Carlo simulation is quite easily
implemented in pure Python, NumPy is especially de-
signed to handle such operations. To this end, note that
our end product S is a list of one million lists with 51 en-
tries each. This can be seen as a matrix – or a rectangu-
lar array – of size 1,000,000 x 51. And NumPy’s major
strength is to process data structures of this kind.

Therefore, the following Python script illustrates the
implementation of the same algorithm, this time based
on NumPy’s array manipulation capabilities (Listing 2).

The execution of this script gives:

Absolute Log Return 0.050

Duration in Seconds 5.046

Apart from being equally exact, we can say the following:

• code: the NumPy version of the simulation is much
more compact – involving only one loop instead of
two – and is therefore better readable and easier to
maintain

• speed: execution speed of the NumPy code is
about 22 times faster than pure Python

Listing 1. Monte Carlo Simulation: Pure Python Code

#

Simulating Geometric Brownian Motion with Python

#

from time import time

from math import exp, sqrt, log

from random import gauss

t0 = time()

Parameters

S0 = 100; r = 0.05; sigma = 0.2

T = 1.0; M = 50; dt = T / M; I = 1000000

Simulating I paths with M time steps

S = []

for i in range(I):

 path = []

 for t in range(M + 1):

 if t == 0:

 path.append(S0)

 else:

 z = gauss(0.0, 1.0)

 St = path[t-1] * exp((r - 0.5 * sigma **

2) * dt

 + sigma * sqrt(dt)

* z)

 path.append(St)

 S.append(path)

Calculating the absolute log return

av = sum([path[-1] for path in S]) / I

print “Absolute Log Return %7.3f” % log(av / S0)

print “Duration in Seconds %7.3f” % (time() - t0)

http://www.visixion.com/
http://www.visixion.com/

en.sdjournal.org 59

FINANCIAL ANALyTICS WITh PyThoN

In terms of efficiency with regard to our financial an-
alytics example, we have gained twofold by applying
NumPy: we have to write less code which executes
faster. The faster execution results from the fact that
the NumPy library is to a large extent implemented in
C and also Fortran. This means that loops that are del-
egated to the NumPy level are executed at the speed
of C code.

The simulation algorithm can even be further short-
ened by applying a mathematical “trick”. Using the log
version of the discretization scheme, we can avoid loops
completely on the Python level. The respective simula-
tion algorithm boils down to two lines of code (Listing 3).

This code has almost identical execution speed as
the previous NumPy version but is obviously even more
compact. As a matter of software design and also taste,
it could be even a little bit too concise when it comes to
readability and maintenance.

No matter which approach is used, matplotlib helps
with the convenient visualization of the simulation re-
sults. The following code plots the first 10 simulated
paths from the NumPy array S and also the average
over time over all one million paths (Listing 4).

The result from this code is shown in Figure 1 with the
thicker red line being the average over all paths.

Interactive Time Series Analytics
Time series, i.e. data labeled by date and/or time in-
formation, can be found in any business area and any
scientific field. The processing of such data is there-
fore an important analytics discipline. In what follows,
we want to analyze a pair of stocks, namely those of
Apple Inc. and Google Inc. The library we use for this
is pandas which is especially designed to efficiently
handle time series data. The following is an interactive
session with IPython.

In:

import numpy as np

import pandas as pd

import pandas.io.data as web

Listing 2. Monte Carlo Simulation: Python + NumPy Code

#

Simulating Geometric Brownian Motion with NumPy

#

from time import time

import numpy as np

t0 = time()

Parameters

S0 = 100; r = 0.05; sigma = 0.2

T = 1.0; M = 50; dt = T / M; I = 1000000

Simulating I paths with M time steps

S = np.zeros((M+1, I))

S[0] = S0

for t in range(1, M + 1):

 z = np.random.standard_normal(I)

 S[t] = S[t - 1] * np.exp((r - 0.5 * sigma ** 2) * dt

 + sigma *

np.sqrt(dt) * z)

Calculating the absolute log return

print “Absolute Log Return %6.3f” % log(sum(S[-1] /

I / S0))

print “Duration in Seconds %6.3f” % (time() - t0)

Listing 3. Monte Carlo Simulation: Compact NumPy Code

#

Simulating Geometric Brownian Motion with NumPy

(log Version)

#

from numpy import *

Parameters as before

Simulating I paths with M time steps

S = S0 * exp(cumsum((r - 0.5 * sigma ** 2) * dt

 + sigma * sqrt(dt) * random.standard_

normal((M + 1, I)), axis=0))

S[0] = S0

Listing 4. Monte Carlo Simulation: Code to Generate Plot

#

Plotting 10 Stock Price Paths + Average

#

import matplotlib.pyplot as plt

plt.plot(S[:, :10])

plt.plot(np.sum(S, axis=1) / I, ‘r’, lw=2.0)

plt.grid(True)

plt.title(‘Stock Price Paths’)

plt.show() Figure 1. 10 simulated stock price paths and the average over all
paths (red line)

13/201360

pandas can retrieve stock price information directly
from http://finance.yahoo.com:

In:

GOOG = web.DataReader(‘GOOG’, ‘yahoo’, start=’7/28/2008’)

AAPL = web.DataReader(‘AAPL’, ‘yahoo’, start=’7/28/2008’)

The analysis was implemented on 03.August 2013
and the starting date is chosen to get about five years
of stock price data. GOOG and AAPL are now pan-
das DataFrame objects that contain a time index and
a number of different time series. Let’s have a look at
the five most recent records of the Google data:

In:

GOOG.tail()

Out:

Date Open High low Close volume Adj
Close

2013-07-29 884.90 894.82 880.89 882.27 1891900 882.27

2013-07-30 885.46 895.61 880.87 890.92 1755600 890.92

2013-07-31 892.99 896.51 886.18 887.75 2072900 887.75

2013-08-01 895.00 904.55 895.00 904.22 2124500 904.22

2013-08-02 903.44 907.00 900.82 906.57 1713900 906.57

We are only interested in the “Close” data of both
stocks, so we generate a third DataFrame, using the
respective columns of the other DataFrame objects. We
can do this by calling the DataFrame function and pro-
viding a dictionary specifying what we want from the two
other objects. The time series are both normalized to
start at 100 while the time index is automatically inferred
from the input.

In:

DATA = pd.DataFrame({‘AAPL’ : AAPL[‘Close’] /

AAPL[‘Close’].ix[0],

 ‘GOOG’ : GOOG[‘Close’] /

GOOG[‘Close’].ix[0]}) * 100

DATA.head()

Out:

Date AAPl GOOG
2008-07-28 100.000000 100.000000

2008-07-29 101.735751 101.255449

2008-07-30 103.549223 101.169517

2008-07-31 102.946891 99.293679

2008-08-01 101.463731 98.059188

Calling the plot method of the DataFrame class gen-
erates a plot of the time series data.

In:

DATA.plot()

Figure 2 shows the resulting figure. Although Apple
stock prices recently decreased sharply, it nevertheless
outperformed Google over this particular time period.

It is a stylized fact, that prices of technology stocks
are highly positively correlated. This means, roughly
speaking, that they tend to perform in tandem: when
the price of one stock rises (falls) the other stock price
is likely to rise (fall) as well. To analyze if this is the case
with Apple and Google stocks, we first add log return
columns to our DataFrame.

In:

DATA[‘AR’] = np.log(DATA[‘AAPL’] / DATA[‘AAPL’].shift(1))

DATA[‘GR’] = np.log(DATA[‘GOOG’] / DATA[‘GOOG’].shift(1))

DATA.tail()

Out:

Figure 3. Scatter plot of Google and Apple stock price returns from
28. July 2008 until 02. August 2013; red line is the OLS regression
result with y = 0.005 + 0.67 x

Figure 2. Apple and Google stock prices since 28. July 2008 until 02.
August 2013; both time series normalized to start at 100

http://finance.yahoo.com/

en.sdjournal.org 61

FINANCIAL ANALyTICS WITh PyThoN

Date AAPl GOOG AR GR
2013-07-29 290.019430 184.915744 0.015302 -0.003485

2013-07-30 293.601036 186.728706 0.012274 0.009757

2013-07-31 293.089378 186.064302 -0.001744 -0.003564

2013-08-01 295.777202 189.516264 0.009129 0.018383

2013-08-02 299.572539 190.008803 0.012750 0.002596

We next want to implement an ordinary least regres-
sion (OLS) analysis (Listing 5).

Obviously, there is indeed a high positive correlation of
+0.67 between the two stock prices. This is readily illus-
trated by a scatter plot of the returns and the resulting
linear regression line (Listing 6). Figure 3 shows the re-
sulting output of this code. All in all, we need about 10
lines of code to retrieve five years of stock price data for
two stocks, to plot this data, to calculate and add the daily

log returns for both stocks and to conduct a least squares
regression. Some additional lines of code yield a custom
scatter plot of the return data plus the linear regression
line. This illustrates that Python in combination with pan-
das is highly efficient when it comes to interactive financial
analytics. In addition, through the high level programming
model the technical skills an analyst needs are reduced
to a minimum. As a rule of thumb, one can say that every
analytical question and/or analytics step can be translat-
ed to one or two lines of Python/pandas code.

Performance and Memory Issues
Performance and memory management are important is-
sues for data analytics. On the one hand, since Python is
an interpreted language, just-in-time compiling can pro-
vide a means for notable speed-ups. On the other hand,
today’s common data sets often exceed the memory ca-
pacity generally available at single computing nodes/ma-

Listing 5. Implementing an (OLS) analysis

In:

model = pd.ols(y=DATA[‘AR’], x= DATA[‘GR’])

model

Out:

-------------------------Summary of Regression Analysis-------------------------

Formula: Y ~ <x> + <intercept>

Number of Observations: 1263

Number of Degrees of Freedom: 2

R-squared: 0.3578

Adj R-squared: 0.3573

Rmse: 0.0179

F-stat (1, 1261): 702.6634, p-value: 0.0000

Degrees of Freedom: model 1, resid 1261

-----------------------Summary of Estimated Coefficients------------------------

 Variable Coef Std Err t-stat p-value CI 2.5% CI 97.5%

--

 x 0.6715 0.0253 26.51 0.0000 0.6218 0.7211

 intercept 0.0005 0.0005 1.05 0.2959 -0.0005 0.0015

---------------------------------End of Summary---------------------------------

Listing 6. Scatter plot of the returns and the resulting linear
regression line

In:

import matplotlib.pyplot as plt

plt.plot(DATA[‘GR’], DATA[‘AR’], ‘b.’)

x = np.linspace(plt.axis()[0], plt.axis()[1] + 0.01)

plt.plot(x, model.beta[1] + model.beta[0] * x, ‘r’, lw=2)

plt.grid(True); plt.axis(‘tight’)

plt.xlabel(‘Google Stock Returns’); plt.ylabel(‘Apple

Stock Returns’)

13/201362

chines. A solution to this might be to use out-of-memory
approaches. In addition, depending on the typical analyt-
ics tasks to be implemented, one should consider care-
fully which hardware approach to follow.

just-in-Time Compiling
A number of typical analytics algorithms demand for a
large number of iterations over data sets which then re-
sults in (nested) loop structures. The Monte Carlo algo-
rithm is an example for this. In that case, using NumPy
and avoiding loops on the Python level yields a sig-
nificant increase in execution speed. NumPy is really
strong when it comes to fully populated matrices/arrays
of rectangular form. However, not all algorithms can be
beneficially casted to such a structural set-up.

We illustrate the use of the just-in-time compiler Num-
ba (http://numba.pydata.org) to speed up pure Python
code through an interactive IPython session.

The following is an example function with a nested
loop structure where the inner loop increases in multi-
plicative fashion with the outer loop.

In:

import math

def f(n):

 iter = 0.0

 for i in range(n):

 for j in range(n * i):

 iter += math.sin(pi / 2)

 return int(iter)

It returns the number of iterations, with the counting
being made a bit more compute intensive than usual.
Let’s measure execution speed for this function by us-
ing the IPython magic function %time.

In:

n = 400

%time f(n)

Out:

CPU times: user 1min 16s, sys: 0 ns, total: 1min 16s

Wall time: 1min 16s

31920000

32 million loops take about 75 seconds to execute.
Let’s see what we can get from just-in-time compiling
with Numba.

In:

import numba as nb

f_nb = nb.autojit(f)

Two lines of code suffice to compile the pure Python
function into a Python-callable compiled C function.

In:

n = 400

%time f_nb(n)

Out:

CPU times: user 41 ms, sys: 0 ns, total: 41 ms

Wall time: 40.2 ms

31920000L

This time, the same number of loops only takes 40
milliseconds to execute. A speed-up of almost 1,900
times. The remarkable aspects are that this speed-up
is reached by two additional lines of code only and that
no changes to the Python function are necessary.

Although this algorithm could in principle be imple-
mented by using standard NumPy arrays, the array
would have to be of shape 16,000 x 16,000 or approxi-
mately 2 GB of size. In addition, due to the very nature
of the nested loop there would not be much potential to
vectorize it. In addition, operating with higher n would
maybe lead to a too high memory demand.

In:

n = 1500

%time f_nb(n)

Out:

CPU times: user 2.13 s, sys: 0 ns, total: 2.13 s

Wall time: 2.13 s

1686375000L

For n = 1,500 the algorithm loops more than 1.6 billion
times with the last inner loop looping 1,499 x 1,499 =
2,247,001 times. With this parametrization, the typical
NumPy approach is not applicable anymore. However,
the Numba compiled function does the job in a little bit
more than 2 seconds.

In summary, we can say the following:

• code: two lines of code suffice to generate a com-
piled version of a loop-heavy pure Python algorithm

• speed: execution speed of the Numba-compiled func-
tion is about 1,900 times faster than pure Python

• memory: Numba preserves the memory efficiency
of the algorithm since it only needs to store a single
floating point number – and not a large array of floats

out-of-Memory operations
Just-in-time compiling obviously helps to implement
custom algorithms that are fast and memory efficient.
However, there are in general data sets that exceed
available memory, like large arrays which might grow
over time, and on which one has to implement numeri-
cal operations resulting in output that again might ex-
ceed available memory.

http://numba.pydata.org/

en.sdjournal.org 63

FINANCIAL ANALyTICS WITh PyThoN

The library PyTables, which is based on the HDF5
standard (http://www.hdfgroup.org/HDF5/), offers a num-
ber of routes to implement out-of-memory calculations.

Suppose you have a computing node with 512 MB of
RAM, like with a free account of Wakari. Assume further
that you have an array called ear which is of size 700
MB or larger. On this array, you might want to calculate
the Python expression

3 * sin(ear) + abs(ear) ** 0.5

Using pure NumPy would lead to four temporary ar-
rays of the size of ear and of an additional result array
of the same size. This is all but memory efficient. The
library numexpr (https://code.google.com/p/numexpr/)
resolves this problem by optimizing, parallelizing and
compiling numerical expressions like these and avoid-
ing temporary arrays – leading to significant speed-
ups in general and much better use of memory. How-
ever, in this case it does not solve the problem since
even the input array does not fit into the memory.

PyTables offers a solution through the Expr mod-
ule which is similar in spirit to numexpr but works with
disk-based arrays. Let’s have a look at a respective
IPython session:

In:

import numpy as np

import tables as tb

h5 = tb.openFile(‘data.h5’, ‘w’)

This opens a PyTables/HDF5 database where we can
store our example data.

In:

n = 600

ear = h5.createEArray(h5.root, ‘ear’, atom=tb.

Float64Atom(), shape=(0, n))

This creates a disk-based array with name ear that is
expandable in the first dimension and has fixed width
of 600 in the second dimension.

In:

rand = np.random.standard_normal((n, n))

for i in range(250):

 ear.append(rand)

ear.flush()

This populates the disk-based array with (pseudo-)ran-
dom numbers. We do it via looping to generate an ar-
ray which is larger than the memory size.

In:

ear

Out:

/ear (EArray(150000, 600)) ‘’

 atom := Float64Atom(shape=(), dflt=0.0)

 maindim := 0

 flavor := ‘numpy’

 byteorder := ‘little’

 chunkshape := (13, 600)

We can easily get the size of this array on disk by:

In:

ear.size_on_disk

Out:

720033600L

The array has a size of more than 700 MB. We need a
disk-based results store for our numerical calculation
since it does not fit in the memory of 512 MB either.

In:

out = h5.createEArray(h5.root, ‘out’, atom=tb.

Float64Atom(), shape=(0, n))

Now, we can use the Expr module to evaluate the nu-
merical expression from above: Listing 7.

This code calculates the expression and writes the re-
sult in the out array on disk. This means that doing all
the calculations plus writing 700+ MB of output takes
about 35 seconds in this case. This might seem not too
fast, but it made possible a calculation which was im-
possible otherwise on the given hardware beforehand.

Finally, you should close your database.

In:

h5.close()

The example illustrates that PyTables allows to imple-
ment an array operation which would at least involve
1.4 GB of RAM by using NumPy and numexpr on a
machine with 512 MB RAM only.

Scaling-out vs. Scaling-Up
Although the majority of today’s business and research
data analytics efforts are confronted with “big” data, sin-
gle analytics tasks generally use data (sub-)sets that
fall in the “mid” data category. A recent study concluded:

“Our measurements as well as other recent work
shows that the majority of real-world analytic jobs
process less than 100 GB of input, but popular in-
frastructures such as Hadoop/MapReduce were orig-
inally designed for petascale processing. We claim
that a single “scale-up” server can process each of
these jobs and do as well or better than a cluster in
terms of performance, cost, power, and server den-

http://www.hdfgroup.org/HDF5/
https://code.google.com/p/numexpr/

13/201364

sity” (Raja Appuswamy et al. (2013): “Nobody Ever
Got Fired for Buying a Cluster.” Microsoft Research,
Cambridge UK).

In terms of frequency, analytics tasks generally pro-
cess data not more than a couple of gigabytes. And this
is a sweet spot for Python and its performance libraries
like NumPy, pandas, PyTables, Numba, IOPro, etc.

Companies, research institutes and others involved in
data analytics should therefore analyze first what spe-
cific tasks have to be accomplished in general and then
decide on the hard-/software architecture in terms of

• scaling-out – cluster with many commodity nodes or
• scaling-up – single or few powerful servers with

many CPU cores, possibly a GPU and large
amounts of memory.

Two examples underpin this observation. First, the out-
of-memory calculation of the numerical expression with
PyTables takes 35 seconds on a standard node in the
cloud. Using a different hardware set-up, like hybrid
disk drives or SSD, can significantly improve I/O speeds
which is the bottleneck for out-of-memory calculations.
For example, the same operation takes only 9 seconds
on a different machine with a hybrid disk drive.

Similarly, having available enough RAM, allowing for
the in-memory evaluation of the same numerical ex-
pression, saves even more time. To this end, we read
the complete disk-based array to the memory of a ma-
chine with enough memory and then implement the cal-
culation with NumPy and numexpr.

In:

h5 = tb.openFile(‘data.h5’, ‘r’)

arr = h5.root.ear.read()

h5.close()

Now, the whole data set is in the memory and can be
processed there.

In:

import numexpr as ne

%time res = ne.evaluate(‘3 * sin(arr) + abs(arr) ** 0.5’)

Out:

CPU times: user 6.37 s, sys: 264 ms, total: 6.64 s

Wall time: 881 ms

In terms of hardware, the following components gener-
ally help improve performance:

• storage: better storage hardware, like hybrid drives or
SSD, can improve disk-based I/O operations signifi-
cantly; in the example, by a factor of about 4 times

• memory: larger memory allows to implement more
analytics tasks in-memory, avoiding generally slow-
er disk-based I/O operations completely (apart from
maybe reading the input data from disk)

• CPU: using multi-core CPUs allows for the par-
allelization of such calculations; in the example
case, numexpr used eight threads of a four core
CPU to parallelize the execution of the code; in-
memory, parallel execution then leads to a speed-
up of 40 times relative to the original out-of-mem-
ory, disk-based calculation (881 milliseconds vs.
34.6 seconds).

The Future of Python-based Analytics
Python has evolved from a high-level scripting language
to an environment for efficient and high performing da-
ta and financial analytics. Python, in combination with
such libraries as pandas or Numba, has the potential to
revolutionize analytics as we know it today. At our com-
pany Continuum Analytics, the vision for Python-based
data analytics is the following:

“To revolutionize data analytics and visualization by
moving high-level Python code and domain expertise
closer to data. This vision rests on four pillars:

• simplicity: advanced, powerful analytics, accessible
to domain experts and business users via a simpli-
fied programming paradigm

• interactivity: interactive analysis and visualization of
massive data sets

• collaboration: collaborative, shareable analysis (da-
ta, code, results, graphics)

• scale: out-of-core, distributed data processing”

Continuum Analytics is actively involved in a number
of open source and other Python-related projects – a
small selection of which have been introduced in this ar-
ticle – that aim at realizing this vision. Among them are:

Listing 7. Expr module to evaluate the numerical expressio

In:

expr = tb.Expr(‘3 * sin(ear) + abs(ear) ** 0.5’)

expr.setOutput(out, append_mode=True)

%time expr.eval()

Out:

CPU times: user 2.29 s, sys: 1.51 s, total: 3.8 s

Wall time: 34.6 s

/out (EArray(150000, 600)) ‘’

 atom := Float64Atom(shape=(), dflt=0.0)

 maindim := 0

 flavor := ‘numpy’

 byteorder := ‘little’

 chunkshape := (13, 600)

FINANCIAL ANALyTICS WITh PyThoN

• Anaconda This open source Python distribution
contains the most important Python libraries and
tools needed – like NumPy, SciPy, PyTables, pan-
das, IPython – to set-up a consistent Python ana-
lytics environment on desktops/notebooks and or
servers/cloud nodes.

• Wakari This Web-based solution allows the deploy-
ment of Python and e.g. the use of IPython Note-
books via public or private clouds (Currently, the
cloud version of Wakari is operated by Continu-
um Analytics on Amazon EC2); in that way, Python
can be deployed across an organization by using
standard browsers only and therewith avoiding the
need for costly software distribution and mainte-
nance; in addition, Wakari offers a number of func-
tions to easily share both analytics code and re-
sults within an organization or with the general pub-
lic.

• Blaze this open source library is designed to be a
combination of the high performing array library
NumPy and the fast hierarchical database PyTa-
bles; Blaze allows the use of very large arrays
which are potentially disk-based and distributed
among a number of computing nodes; for example,
multiplications of two arrays, each of size 400 GB,
become possible with this approach.

• NumbaPro this commercial just-in-time compiler
relies on the LLVM (aka for Low Level Virtual Ma-
chine), a compiler infrastructure written in C++; for
example, as shown in this article, loop-heavy al-
gorithms can experience speed-ups of up to 1,900
times by being compiled with Numba; the Pro ver-
sion adds additional capabilities to generate paral-
lel, vectorized code for both CPUs and GPUs

• IOPro this commercial library provides optimized
SQL, NoSQL, CSV interfaces for NumPy, SciPy,
and PyTables leading to high performance I/O op-
erations with Python.

• Bokeh visualization of large data sets generally is a
difficult and/or slow task, in particular when the da-
ta set has to be transferred via Web or intranet; the
open source library Bokeh addresses this problem
and allows the browser-based, interactive visualiza-
tion of large data sets.

In the end, Python in combination with these and sim-
ilar libraries and tools will make possible data in-
frastructures that are like large, interconnected Da-
ta Webs in the same way as technologies like URL,
HTTP or HTML made possible the World Wide Web.
Using solutions like Wakari, businesses and other in-
stitutions can then implement data analytics process-
es on such a Data Web that are characterized by agili-
ty, interactivity and collaboration.

In the end, decision makers will be able to process,
analyze and visualize big data interactively and in real-
time, contributing to the bottom line of those companies
who are able to systematically deploy these new Py-
thon-based technologies and approaches.

DR. yVES j. hILPISCh
Managing Director Europe of Continuum Analytics, Inc., Aus-
tin, TX, USA. Lecturer Mathematical Finance at Saarland
University, Saarbruecken, Germany. Ph.D. in Mathemati-
cal Finance. http://www.hilpisch.com – yves@continuum.io –
http://www.twitter.com/dyjh.

a d v e r t i s e m e n t

http://www.hilpisch.com/
mailto:yves@continuum.io
http://www.twitter.com/dyjh
http://www.it-securityguard.com/
http://www.it-securityguard.com/

13/201366

Test-Driven Development
With Python

Software development is easier and more accessible now than
it ever has been. unfortunately, rapid development speeds
offered by modern programming languages make it easy for us
as programmers to overlook the possible error conditions in our
code and move on to other parts of a project. Automated tests
can provide us with a level of certainty that our code really does
handle various situations the way we expect it to, and these
tests can save hundreds upon thousands of man-hours over the
course of a project’s development lifecycle.

Automated testing is a broad topic–there are ma-
ny different types of automated tests that one
might write and use. In this article we’ll be con-

centrating on unit testing and, to some degree, integra-
tion testing using Python 3 and a methodology known
as “test-driven development” (referred to as “TDD” from
this point forward). Using TDD, you will learn how to
spend more time coding than you spend manually test-
ing your code.

To get the most out of this article, you should have a
fair understanding of common programming concepts.
For starters, you should be familiar with variables, func-
tions, classes, methods, and Python’s import mecha-
nism. We will be using some neat features in Python,
such as context managers, decorators, and monkey-
patching. You don’t necessarily need to understand the
intricacies of these features to use them for testing.

Josh VanderLinden is a life-long technology enthusi-
ast, who started programming at the age of ten. Josh
has worked primarily in web development, but he also
has experience with network monitoring and systems
administration. He has recently gained a deep appre-
ciation for automated testing and TDD.

The main idea behind TDD is, as the name implies,
that your tests drive your development efforts. When
presented with a new requirement or goal, TDD would
have you run through a series of steps:

• add a new (failing) test,
• run your entire test suite and see the new test fail,
• write code to satisfy the new test,
• run your entire test suite again and see all tests

pass,
• refactor your code,
• repeat.

There are several advantages to writing tests for your
code before you write the actual code. One of the
most valuable is that this process forces you to really
consider what you want the program to do before you
start deciding how it will do so. This can help prepare
you for unforeseen difficulties integrating your code
with existing code or systems. You could also unearth
possible conflicts between requirements that are deliv-
ered to you to fulfill.

Another incredibly appealing advantage of TDD is that
you gain a higher level of confidence in the code that
you’ve written. You can quickly detect bugs that new de-
velopment efforts might introduce when combined with
older, historically stable code. This high level of confi-
dence is great not only for you as a developer, but also
for your supervisors and clients.

The best way to learn anything like this is to do it your-
self. We’re going to build a simple game of Pig, relying
on TDD to gain a high level of confidence that our game

https://en.wikipedia.org/wiki/Pig_(dice_game)

en.sdjournal.org 67

TEST-DRIVEN DEVELoPMENT WITh PyThoN

will do what we want it to long before we actually play
it. Some of the basic tasks our game should be able to
handle include the following:

• allow players to join,
• roll a six-sided die,
• track points for each player,
• prompt players for input,
• end the game when a player reaches 100 points.

We’ll tackle each one of those tasks, using the TDD
process outlined above. Python’s built-in unittest li-
brary makes it easy to describe our expectations using
assertions. There are many different types of assertions
available in the standard library, most of which are pret-
ty self-explanatory given a mild understanding of Py-
thon. For the rest, we have Python’s wonderful docu-
mentation [1]. We can assert that values are equal, one
object is an instance of another object, a string matches
a regular expression, a specific exception is raised un-
der certain conditions, and much more.

With unittest, we can group a series of related tests
into subclasses of unittest.TestCase. Within those sub-
classes, we can add a series of methods whose names
begin with test. These test methods should be de-
signed to work independently of the other test methods.
Any dependency between one test method and anoth-
er will be brittle and introduces the potential to cause
a chain reaction of failed tests when running your test
suite in its entirety.

So let’s take a look at the structure for our project and
get into the code to see all of this in action.

pig/

 game.py

 test_game.py

Both files are currently empty. To get started, let’s add
an empty test case to test_game.py to prepare for our
game of Pig: Listing 1.

The Game of Pig
The rules of Pig are simple: a player rolls a single die.
If they roll anything other than one, they add that value
to their score for that turn. If they roll a one, any points
they’ve accumulated for that turn are lost. A player’s
turn is over when they roll a one or they decide to hold.
When a player holds before rolling a one, they add their
points for that turn to their total points. The first player to
reach 100 points wins the game.

For example, if player A rolls a three, player A may
choose to roll again or hold. If player A decides to roll
again and they roll another three, their total score for the
turn is six. If player A rolls again and rolls a one, their
score for the turn is zero and it becomes player B’s turn.

Player B may roll a six and decide to roll again. If play-
er B rolls another six on the second roll and decides to
hold, player B will add 12 points to their total score. It
then becomes the next player’s turn.

We’ll design our game of Pig as its own class, which
should make it easier to reuse the game logic else-
where in the future.

joining The Game
Before anyone can play a game, they have to be able to
join it, correct? We need a test to make sure that works:
Listing 2.

Listing 1. An empty TestCase subclass

from unittest import TestCase

class GameTest(TestCase):

 pass

Listing 2. Our first test

from unittest import TestCase

import game

class GameTest(TestCase):

 def test_join(self):

 “””Players may join a game of Pig”””

 pig = game.Pig(‘PlayerA’, ‘PlayerB’, ‘PlayerC’)

 self.assertEqual(pig.get_players(), (‘PlayerA’,

‘PlayerB’, ‘PlayerC’))

Listing 3. Running our first test

E

==

ERROR: test_join (test_game.GameTest)

Players may join a game of Pig

--

Traceback (most recent call last):

 File “./test_game.py”, line 11, in test_join

 pig = game.Pig(‘PlayerA’, ‘PlayerB’, ‘PlayerC’)

AttributeError: ‘module’ object has no attribute ‘Pig’

--

Ran 1 test in 0.000s

FAILED (errors=1)

http://public.codekoala.com/docs/pigbot/build/html/tdd.html#f1

13/201368

We simply instantiate a new Pig game with some
player names. Next, we check to see if we’re able to get
an expected value out of the game. As mentioned ear-
lier, we can describe our expectations using assertions–
we assert that certain conditions are met. In this case,
we’re asserting equality with TestCase.assertEqual. We
want the players who start a game of Pig to equal the
same players returned by Pig.get_players. The TDD
steps suggest that we should now run our test suite and
see what happens.

To do that, run the following command from your proj-
ect directory:

python -m unittest

It should detect that the test_game.py file has a
unittest.TestCase subclass in it and automatically run
any tests within the file. Your output should be similar
to this: Listing 3.

We had an error! The E on the first line of output indi-
cates that a test method had some sort of Python error.

This is obviously a failed test, but there’s a little more to
it than just our assertion failing. Looking at the output a
bit more closely, you’ll notice that it’s telling us that our
game module has no attribute Pig. This means that our
game.py file doesn’t have the class that we tried to in-
stantiate for the game of Pig.

It is very easy to get errors like this when you practice
TDD. Not to worry; all we need to do at this point is stub
out the class in game.py and run our test suite again. A
stub is just a function, class, or method definition that
does nothing other than create a name within the scope
of the program (Listing 4).

When we run our test suite again, the output should
be a bit different: Listing 5.

Much better. Now we see F on the first line of output,
which is what we want at this point. This indicates that we
have a failing test method, or that one of the assertions
within the test method did not pass. Inspecting the ad-
ditional output, we see that we have an AssertionError.
The return value of our Pig.get_players method is cur-
rently None, but we expect the return value to be a tuple

Listing 4. Stubbing code that we plan to test

class Pig:

 def __init__(self, *players):

 pass

 def get_players(self):

 “””Return a tuple of all players”””

 pass

Listing 5. The test fails for the right reason

F

==

FAIL: test_join (test_game.GameTest)

Players may join a game of Pig

--

Traceback (most recent call last):

 File “./test_game.py”, line 12, in test_join

 self.assertEqual(pig.get_players(), (‘PlayerA’,

‘PlayerB’, ‘PlayerC’))

AssertionError: None != (‘PlayerA’, ‘PlayerB’, ‘PlayerC’)

--

Ran 1 test in 0.000s

FAILED (failures=1)

Listing 6. Implementing code to satisfy the test

class Pig:

 def __init__(self, *players):

 self.players = players

 def get_players(self):

 “””Returns a tuple of all players”””

 return self.players

Listing 7. The test is satisfied

.

--

Ran 1 test in 0.000s

OK

Listing 8. Test for the roll of a six-sided die

 def test_roll(self):

 “””A roll of the die results in an integer

between 1 and 6”””

 pig = game.Pig(‘PlayerA’, ‘PlayerB’)

 for i in range(500):

 r = pig.roll()

 self.assertIsInstance(r, int)

 self.assertTrue(1 <= r <= 6)

en.sdjournal.org 69

TEST-DRIVEN DEVELoPMENT WITh PyThoN

with player names. Now, following with the TDD pro-
cess, we need to satisfy this test. No more, no less (List-
ing 6). And we need to verify that we’ve satisfied the
test: Listing 7.

Excellent! The dot (.) on the first line of output indi-
cates that our test method passed. The return value of
Pig.get_players is exactly what we want it to be. We
now have a high level of confidence that players may
join a game of Pig, and we will quickly know if that stops
working at some point in the future. There’s nothing
more to do with this particular part of the game right
now. We’ve satisfied our basic requirement. Let’s move
on to another part of the game.

Rolling The Die
The next critical piece of our game has to do with how
players earn points. The game calls for a single six-sid-
ed die. We want to be confident that a player will always
roll a value between one and six. Here’s a possible test
for that requirement (Listing 8).

Since we’re relying on “random” numbers, we test the
result of the roll method repeatedly. Our assertions all
happen within the loop because it’s important that we
always get an integer value from a roll and that the val-
ue is within our range of one to six. It’s not bulletproof,

but it should give us a fair level of confidence anyway.
Don’t forget to stub out the new Pig.roll method so our
test fails instead of errors out (Listing 9 and listing 10).

Let’s check the output. There is a new F on the first
line of output. For each test method in our test suite, we
should expect to see some indication that the respec-
tive methods are executed. So far we’ve seen three
common indicators:

• E, which indicates that a test method ran but had a
Python error,

• F, which indicates that a test method ran but one of
our assertions within that method failed,

• ., which indicates that a test method ran and that
all assertions passed successfully.

There are other indicators, but these are the three we’ll
deal with for the time being. The next TDD step is to
satisfy the test we’ve just written. We can use Python’s
built-in random library to make short work of this new
Pig.roll method (Listing 11 and Listing 12).

Checking Scores
Players might want to check their score mid-game, so
let’s add a test to make sure that’s possible. Again, don’t

Listing 9. Stub of our new Pig.roll method

 def roll(self):

 “””Return a number between 1 and 6”””

 pass

Listing 10. Die rolling test fails

.F

==

FAIL: test_roll (test_game.GameTest)

A roll of the die results in an integer between 1 and 6

--

Traceback (most recent call last):

 File “./test_game.py”, line 21, in test_roll

 self.assertIsInstance(r, int)

AssertionError: None is not an instance of <class ‘int’>

--

Ran 2 tests in 0.001s

FAILED (failures=1)

Listing 11. Implementing the roll of a die

import random

 def roll(self):

 “””Return a number between 1 and 6”””

 return random.randint(1, 6)

Listing 12. Implemention meets our expectations

..

--

Ran 2 tests in 0.003s

OK

Listing 13. Test that each player has a default score

 def test_scores(self):

 “””Player scores can be retrieved”””

 pig = game.Pig(‘PlayerA’, ‘PlayerB’,

‘PlayerC’)

 self.assertEqual(

 pig.get_score(),

 {

 ‘PlayerA’: 0,

 ‘PlayerB’: 0,

 ‘PlayerC’: 0

 }

)

13/201370

forget to stub out the new Pig.get_scores method (List-
ing 13 and Listing 14).

Note that ordering in dictionaries is not guaranteed,
so your keys might not be printed out in the same order
that you typed them in your code. And now to satisfy the
test (Listing 15 and Figure 16).

The test has been satisfied. We can move on to an-
other piece of code now if we’d like, but let’s remember
the fifth step from our TDD process. Let’s try refactoring
some code that we already know is working and make
sure our assertions still pass.

Python’s dictionary object has a neat little method
called fromkeys that we can use to create a new dic-
tionary with a list of keys. Additionally, we can use this
method to set the default value for all of the keys that
we specify. Since we’ve already got a tuple of player
names, we can pass that directly into the dict.fromkeys
method (Listing 17 and Listing 18).

The fact that our test still passes illustrates a few very
important concepts to understand about valuable auto-
mated testing. The most useful unit tests will treat the
production code as a “black box”. We don’t want to test
implementation. Rather, we want to test the output of a
unit of code given known input.

Testing the internal implementation of a function or
method is asking for trouble. In our case, we found a

way to leverage functionality built into Python to refac-
tor our code. The end result is the same. Had we test-
ed the specific low-level implementation of our Pig.get_
score definition, the test could have easily broken after
refactoring despite the code still ultimately doing what
we want.

The idea of validating the output of a unit of code
when given known input encourages another valuable
practice. It stimulates the desire to design our code with
more single-purpose functions and methods. It also dis-
courages the inclusion of side effects.

In this context, side effects can mean that we’re
changing internal variables or state which could influ-
ence the behavior other units of code. If we only deal
with input values and return values, it’s very easy to rea-
son about the behavior of our code. Side effects are
not always bad, but they can introduce some interesting
conditions at runtime that are difficult to reproduce for
automated testing.

It’s much easier to confidently test smaller, single-
purpose units of code than it is to test massive blocks
of code. We can achieve more complex behavior by
chaining together the smaller units of code, and we
can have a high level of confidence in these compo-
sitions because we know the underlying units meet
our expectations.

Listing 14. Default score is not implemented

..F

==

FAIL: test_scores (test_game.GameTest)

Player scores can be retrieved

--

Traceback (most recent call last):

 File “./test_game.py”, line 33, in test_scores

 ‘PlayerC’: 0

AssertionError: None != {‘PlayerB’: 0, ‘PlayerC’: 0,

‘PlayerA’: 0}

--

Ran 3 tests in 0.004s

FAILED (failures=1)

Listing 15. First implementation for default scores

 def __init__(self, *players):

 self.players = players

 self.scores = {}

 for player in self.players:

 self.scores[player] = 0

 def get_score(self):

 “””Return the score for all players”””

 return self.scores

Listing 16. Checking our default scores implementation

...

--

Ran 3 tests in 0.004s

OK

Listing 17. Another way to handle default scores

 def __init__(self, *players):

 self.players = players

 self.scores = dict.fromkeys(self.players, 0)

Listing 18. The new implementation is acceptable

...

--

Ran 3 tests in 0.003s

OK

en.sdjournal.org 71

TEST-DRIVEN DEVELoPMENT WITh PyThoN

Prompt Players For Input
Now we’ll get into something more interesting by test-
ing user input. This brings up a rather large stumbling
block that many encounter when learning how to test
their code: external systems. External systems may in-
clude databases, web services, local filesystems, and
countless others.

During testing, we don’t want to have to rely on our
test computer, for example, being on a network, con-
nected to the Internet, having routes to a database serv-
er, or making sure that a database server itself is online.
Depending on all of those external systems being online
is brittle and error-prone for automated testing.

In our case, user input can be considered an exter-
nal system. We don’t control values given to use by the
user, but we want to be able to deal with those values.
Prompting the user for input each and every time we
launch our test suite would adversely affect our tests in
multiple ways. For example, the tests would suddenly
take much longer, and the user would have to enter the
same values each time they run the tests.

We can leverage a concept called “mocking” to remove
all sorts of external systems from influencing our tests in
bad ways. We can mock, or fake, the user input using
known values, which will keep our tests running quickly
and consistently. We’ll use a fabulous library that is built
into Python (as of version 3.3) called mock for this.

Let’s begin testing user input by testing that we can
prompt for player names. We’ll implement this one as a
standalone function that is separate from the Pig class.
First of all, we need to modify our import line in test_
game.py so we can use the mock library (Listing 19-21).

The mock library is extremely powerful, but it can take
a while to get used to. Here we’re using it to mock the
return value of multiple calls to Python’s built-in input
function through mock‘s side_effect feature. When you
specify a list as the side effect of a mocked object,
you’re specifying the return value for each call to that
mocked object. For each call to input, the first value will
be removed from the list and used as the return value
of the call.

In our code the first call to input will consume and re-
turn ‘A’, leaving [‘M’, ‘Z’, ‘’] as the remaining return
values. We add an additional empty value as a side ef-
fect to signal when we’re done entering player names.
And we don’t expect the empty value to appear as a
player name.

Note that if you supply fewer return values in the side_
effect list than you have calls to the mocked object, the
code will raise a StopIteration exception. Say, for ex-
ample, that you set the side_effect to [1] but that you
called input twice in the code. The first time you call
input, you’d get the 1 back. The second time you call
input, it would raise the exception, indicating that our
side_effect list has nothing more to return.

We’re able to use this mocked input function through
what’s called a context manager. That is the block that
begins with the keyword with. A context manager basi-
cally handles the setup and teardown for the block of
code it contains. In this example, the mock.patch context
manager will handle the temporary patching of the built-
in input function while we run game.get_player_names().

After the code in the with block as been executed, the
context manager will roll back the input function to its

Listing 19. Importing the mock library

from unittest import TestCase, mock

Listing 20. Introducing mocked objects

 def test_get_player_names(self):

 “””Players can enter their names”””

 fake_input = mock.Mock(side_effect=[‘A’, ‘M’,

‘Z’, ‘’])

 with mock.patch(‘builtins.input’, fake_input):

 names = game.get_player_names()

 self.assertEqual(names, [‘A’, ‘M’, ‘Z’])

Listing 21. Stub function that we will test

def get_player_names():

 “””Prompt for player names”””

 pass

Listing 22. The new test fails

F...

==

FAIL: test_get_player_names (test_game.GameTest)

Players can enter their names

--

Traceback (most recent call last):

 File “./test_game.py”, line 45, in test_get_player_

names

 self.assertEqual(names, [‘A’, ‘M’, ‘Z’])

AssertionError: None != [‘A’, ‘M’, ‘Z’]

--

Ran 4 tests in 0.004s

FAILED (failures=1)

13/201372

original, built-in state. This is very important, particularly
if the code in the with block raises some sort of error.
Even in conditions such as these, the changes to the
input function will be reverted, allowing other code that
may depend on input‘s (or whatever object we have
mocked) original functionality to proceed as expected.

Let’s run the test suite to make sure our new test fails
(Listing 22). Well that was easy! Here’s a possible way
to satisfy this test: Listing 23 and Listing 24.

Would you look at that?! We’re able to test user input
without slowing down our tests much at all!

Notice, however, that we have passed a parameter
to the input function. This is the prompt that appears on
the screen when the program asks for player names.
Let’s say we want to make sure that it’s actually printing
out what we expect it to print out (Listing 25).

This time we’re mocking the input function a bit dif-
ferently. Instead of defining a new mock.Mock object ex-
plicitly, we’re letting the mock.patch context manager de-
fine one for us with certain side effects. When you use
the context manager in this way, you’re able to obtain
the implicitly-created mock.Mock object using the as key-
word. We have assigned the mocked input function to a
variable called fake, and we simply call the same code
as in our previous test.

After running that code, we check to see if our fake
input function was called with certain arguments using
the assert_has_calls method on our mock.Mock object.
Notice that we aren’t checking the result of the get_

player_names function here – we’ve already done that in
another test (Listing 26).

Perfect. It works as we expect it to. One thing to
take away from this example is that there does not
need to be a one-to-one ratio of test methods to actu-
al pieces of code. Right now we’ve got two test meth-
ods for the very same get_player_names function. It is
often good to have multiple test methods for a single
unit of code if that code may behave differently under
various conditions.

Also note that we didn’t exactly follow the TDD pro-
cess for this last test. The code for which we wrote the
test had already been implemented to satisfy an earlier
test. It is acceptable to veer away from the TDD pro-
cess, particularly if we want to validate assumptions
that have been made along the way. When we imple-
mented the original get_player_names function, we as-
sumed that the prompt would look the way we wanted it
to look. Our latest test simply proves that our assump-
tions were correct. And now we will be able to quickly
detect if the prompt begins misbehaving at some point
in the future.

To hold or To Roll
Now it’s time to write a test for different branches of
code for when a player chooses to hold or roll again.
We want to make sure that our roll_or_hold method
will only return roll or hold and that it won’t error out
with invalid input (Listing 27).

Listing 23. Getting a list of player names from the user

def get_player_names():

 “””Prompt for player names”””

 names = []

 while True:

 value = input(“Player {}’s name:

“.format(len(names) + 1))

 if not value:

 break

 names.append(value)

 return names

Listing 24. Our implementation meets expectations

....

--

Ran 4 tests in 0.004s

OK

Listing 25. Test that the correct prompt appears on screen

 def test_get_player_names_stdout(self):

 “””Check the prompts for player names”””

 with mock.patch(‘builtins.input’, side_

effect=[‘A’, ‘B’, ‘’]) as fake:

 game.get_player_names()

 fake.assert_has_calls([

 mock.call(“Player 1’s name: “),

 mock.call(“Player 2’s name: “),

 mock.call(“Player 3’s name: “)

])

Listing 26. All tests pass

.....

--

Ran 5 tests in 0.005s

OK

en.sdjournal.org 73

TEST-DRIVEN DEVELoPMENT WITh PyThoN

This example shows yet another option that we have
for mocking objects. We’ve “decorated” the test_roll_
or_hold method with @mock.patch(‘builtins.input’).
When we use this option, we basically turn the entire
contents of the method into the block within a context
manager. The builtins.input function will be a mocked
object throughout the entire method.

Also notice that the test method needs to accept an
additional parameter, which we’ve called fake_input.
When you mock objects with decorators in this way,
your test methods must accept an additional parameter
for each mocked object.

This time we’re expecting to prompt the player to see
whether they want to roll again or hold to end their turn.
We set the side_effect of our fake_input mock to in-
clude our expected values of r (roll) and h (hold) in both
lower and upper case, along with some input that we
don’t know how to use.

When we run the test suite with this new test (after
stubbing out our roll_or_hold method), it should fail
(Listing 28). Fantastic! Notice how I get excited when
I see a failing test? It means that the TDD process is

working. Eventually you will enjoy seeing failed tests as
well. Trust me.

And to satisfy our new test, we could use some-
thing like this: Listing 29. Run the test suite (Listing
30). We know that our new code works. Even better
than that, we know that we haven’t broken any exist-
ing functionality.

Refactoring Tests
Since we’re doing so much with user input, let’s take a
few minutes to refactor our tests to use a common mock
for the built-in input function before proceeding with our
testing (Listing 31).

A lot has changed in our tests code-wise, but the be-
havior should be exactly the same as before. Let’s re-
view the changes (Listing 32).

We have defined a global mock.Mock instance called
INPUT. This will be the variable that we use in place of
the various uses of mocked input. We are also using
mock.patch as a class decorator now, which will allow
all test methods within the class to access the mocked
input function through our INPUT global.

Listing 27. Player can choose to roll or hold

 @mock.patch(‘builtins.input’)

 def test_roll_or_hold(self, fake_input):

 “””Player can choose to roll or hold”””

 fake_input.side_effect = [‘R’, ‘H’, ‘h’, ‘z’,

‘12345’, ‘r’]

 pig = game.Pig(‘PlayerA’, ‘PlayerB’)

 self.assertEqual(pig.roll_or_hold(), ‘roll’)

 self.assertEqual(pig.roll_or_hold(), ‘hold’)

 self.assertEqual(pig.roll_or_hold(), ‘hold’)

 self.assertEqual(pig.roll_or_hold(), ‘roll’)

Listing 28. Test fails with stub

....F.

==

FAIL: test_roll_or_hold (test_game.GameTest)

Player can choose to roll or hold

--

Traceback (most recent call last):

 File “/usr/lib/python3.3/unittest/mock.py”, line

1087, in patched

 return func(*args, **keywargs)

 File “./test_game.py”, line 67, in test_roll_or_hold

 self.assertEqual(pig.roll_or_hold(), ‘roll’)

AssertionError: None != ‘roll’

--

Ran 6 tests in 0.007s

FAILED (failures=1)

Listing 29. Implementing the next action prompt

 def roll_or_hold(self):

 “””Return ‘roll’ or ‘hold’ based on user

input”””

 action = ‘’

 while True:

 value = input(‘(R)oll or (H)old? ‘)

 if value.lower() == ‘r’:

 action = ‘roll’

 break

 elif value.lower() == ‘h’:

 action = ‘hold’

 break

 return action

Listing 30. All tests pass

......

--

Ran 6 tests in 0.006s

OK

13/201374

This decorator is a bit different from the one we used
earlier. Instead of allowing a mock.Mock object to be
implicitly created for us, we’re specifying our own in-
stance. The value in this solution is that you don’t have
to modify the method signatures for each test method

to accept the mocked input function. Instead, any test
method that needs to access the mock may use the
INPUT global (Listing 33).

We’ve added a setUp method to our class. This meth-
od name has a special meaning when used with Py-

Listing 31. Refactoring test code

from unittest import TestCase, mock

import game

INPUT = mock.Mock()

@mock.patch(‘builtins.input’, INPUT)

class GameTest(TestCase):

 def setUp(self):

 INPUT.reset_mock()

 def test_join(self):

 “””Players may join a game of Pig”””

 pig = game.Pig(‘PlayerA’, ‘PlayerB’,

‘PlayerC’)

 self.assertEqual(pig.get_players(),

(‘PlayerA’, ‘PlayerB’, ‘PlayerC’))

 def test_roll(self):

 “””A roll of the die results in an integer

between 1 and 6”””

 pig = game.Pig(‘PlayerA’, ‘PlayerB’)

 for i in range(500):

 r = pig.roll()

 self.assertIsInstance(r, int)

 self.assertTrue(1 <= r <= 6)

 def test_scores(self):

 “””Player scores can be retrieved”””

 pig = game.Pig(‘PlayerA’, ‘PlayerB’,

‘PlayerC’)

 self.assertEqual(

 pig.get_score(),

 {

 ‘PlayerA’: 0,

 ‘PlayerB’: 0,

 ‘PlayerC’: 0

 }

)

 def test_get_player_names(self):

 “””Players can enter their names”””

 INPUT.side_effect = [‘A’, ‘M’, ‘Z’, ‘’]

 names = game.get_player_names()

 self.assertEqual(names, [‘A’, ‘M’, ‘Z’])

 def test_get_player_names_stdout(self):

 “””Check the prompts for player names”””

 INPUT.side_effect = [‘A’, ‘B’, ‘’]

 game.get_player_names()

 INPUT.assert_has_calls([

 mock.call(“Player 1’s name: “),

 mock.call(“Player 2’s name: “),

 mock.call(“Player 3’s name: “)

])

 def test_roll_or_hold(self):

 “””Player can choose to roll or hold”””

 INPUT.side_effect = [‘R’, ‘H’, ‘h’, ‘z’,

‘12345’, ‘r’]

 pig = game.Pig(‘PlayerA’, ‘PlayerB’)

 self.assertEqual(pig.roll_or_hold(), ‘roll’)

 self.assertEqual(pig.roll_or_hold(), ‘hold’)

 self.assertEqual(pig.roll_or_hold(), ‘hold’)

 self.assertEqual(pig.roll_or_hold(), ‘roll’)

Listing 32. Global mock.Mock object and class decoration

INPUT = mock.Mock()

@mock.patch(‘builtins.input’, INPUT)

class GameTest(TestCase):

Listing 33. Reset global mocks before each test method

 def setUp(self):

 INPUT.reset_mock()

en.sdjournal.org 75

TEST-DRIVEN DEVELoPMENT WITh PyThoN

thon’s unittest library. The setUp method will be ex-
ecuted before each and every test method within the
class. There’s a similar special method called tearDown
that is executed after each and every test method within
the class.

These methods are useful for getting things into a
state such that our tests will run successfully or clean-
ing up after our tests. We’re using the setUp method to
reset our mocked input function. This means that any
calls or side effects from one test method are removed
from the mock, leaving it in a pristine state at the start of
each test (Listing 34).

The test_get_player_names test method no longer de-
fines its own mock object. The context manager is also
not necessary anymore, since the entire method is ef-
fectively executed within a context manager because
we’ve decorated the entire class. All we need to do is
specify the side effects, or list of return values, for our
mocked input function. The test_get_player_names_
stdout test method has also been updated in a similar
fashion (Listing 35).

Finally, our test_roll_or_hold test method no longer
has its own decorator. Also note that the additional pa-
rameter to the method is no longer necessary.

Listing 34. Updating existing test methods to use global mock

 def test_get_player_names(self):

 “””Players can enter their names”””

 INPUT.side_effect = [‘A’, ‘M’, ‘Z’, ‘’]

 names = game.get_player_names()

 self.assertEqual(names, [‘A’, ‘M’, ‘Z’])

 def test_get_player_names_stdout(self):

 “””Check the prompts for player names”””

 INPUT.side_effect = [‘A’, ‘B’, ‘’]

 game.get_player_names()

 INPUT.assert_has_calls([

 mock.call(“Player 1’s name: “),

 mock.call(“Player 2’s name: “),

 mock.call(“Player 3’s name: “)

])

Listing 35. Using the global mock

 def test_roll_or_hold(self):

 “””Player can choose to roll or hold”””

 INPUT.side_effect = [‘R’, ‘H’, ‘h’, ‘z’,

‘12345’, ‘r’]

 pig = game.Pig(‘PlayerA’, ‘PlayerB’)

 self.assertEqual(pig.roll_or_hold(), ‘roll’)

 self.assertEqual(pig.roll_or_hold(), ‘hold’)

 self.assertEqual(pig.roll_or_hold(), ‘hold’)

 self.assertEqual(pig.roll_or_hold(), ‘roll’)

Listing 36. Refactoring has not broken our tests

......

--

Ran 6 tests in 0.005s

OK

Listing 37. Testing actual gameplay

 def test_gameplay(self):

 “””Users may play a game of Pig”””

 INPUT.side_effect = [

 # player names

 ‘George’,

 ‘Bob’,

 ‘’,

 # roll or hold

 ‘r’, ‘r’, # George

 ‘r’, ‘r’, ‘r’, ‘h’, # Bob

 ‘r’, ‘r’, ‘r’, ‘h’, # George

]

 pig = game.Pig(*game.get_player_names())

 pig.roll = mock.Mock(side_effect=[

 6, 6, 1, # George

 6, 6, 6, 6, # Bob

 5, 4, 3, 2, # George

])

 self.assertRaises(StopIteration, pig.play)

 self.assertEqual(

 pig.get_score(),

 {

 ‘George’: 14,

 ‘Bob’: 24

 }

)

13/201376

When you find that you are mocking the same thing in
many different test methods, as we were doing with the
input function, a refactor like what we’ve just done can
be a good idea. Your test code becomes much clean-
er and more consistent. As your test suite continues to
grow, just like with any code, you need to be able to
maintain it. Abstracting out common code, both in your
tests and in your production code, early on will help you
and others to maintain and understand the code.

Now that we’ve reviewed the changes, let’s verify that
our tests haven’t broken (Listing 36). Wonderful. All is
well with our refactored tests.

Tying It All Together
We have successfully implemented the basic components
of our Pig game. Now it’s time to tie everything together
into a game that people can play. What we’re about to do
could be considered a sort of integration test. We aren’t
integrating with any external systems, but we’re going to
combine all of our work up to this point together. We want
to be sure that the previously tested units of code will op-
erate nicely when meshed together (Listing 37). This test
method is different from our previous tests in a few ways.
First, we’re dealing with two mocked objects. We’ve got
our usual mocked input function, but we’re also monkey
patching our game’s roll method. We want this addition-
al mock so that we’re dealing with known values as op-
posed to randomly generated integers.

Instead of monkey patching the Pig.roll method, we
could have mocked the random.randint function. How-
ever, doing so would be walking the fine and dangerous
line of relying on the underlying implementation of our
Pig.roll method. If we ever changed our algorithm for
rolling a die and our tests mocked random.randint, our
test would likely fail.

Our first course of action is to specify the values that
we want to have returned from both of these mocked
functions. For our input, we’ll start with prompting for
player names and also include some “roll or hold” re-
sponses. Next we instantiate a Pig game and define
some not-so-random values that the players will roll.

All we are interested in checking for now is that play-
ers each take turns rolling and that their scores are
adjusted according to the rules of the game. We don’t
need to worry just yet about a player winning when they
earn 100 or more points.

We’re using the self.assertRaises() method because
we know that neither player will obtain at least 100 points
given the side effect values for each mock. As discussed
earlier, we know that the game will exhaust our list of re-
turn values and expect that the mock library itself (not our
game!) will raise the StopIteration exception.

After defining our input values and “random” roll val-
ues, we run through the game long enough for the play-
ers to earn some points. Then we check that each play-
er has the expected number of points. Our test is relying

Listing 38. Test fails with the stub

F......

==

FAIL: test_gameplay (test_game.GameTest)

Users may play a game of Pig

--

Traceback (most recent call last):

 File “/usr/lib/python3.3/unittest/mock.py”, line

1087, in patched

 return func(*args, **keywargs)

 File “./test_game.py”, line 99, in test_gameplay

 self.assertRaises(StopIteration, pig.play)

AssertionError: StopIteration not raised by play

--

Ran 7 tests in 0.007s

FAILED (failures=1)

Listing 39. Gameplay implementation

from itertools import cycle

 def play(self):

 “””Start a game of Pig”””

 for player in cycle(self.players):

 print(‘Now rolling: {}’.format(player))

 action = ‘roll’

 turn_points = 0

 while action == ‘roll’:

 value = self.roll()

 if value == 1:

 print(‘{} rolled a 1 and lost {}

points’.format(player, turn_points))

 break

 turn_points += value

 print(‘{} rolled a {} and now has {}

points for this turn’.format(

 player, value, turn_points

))

 action = self.roll_or_hold()

 self.scores[player] += turn_points

en.sdjournal.org 77

TEST-DRIVEN DEVELoPMENT WITh PyThoN

on the fact that our assertions up to this point are pass-
ing. bSo let’s take a look at our failing test (again, after
stubbing the new play method): Listing 38.

Marvelous, the test fails, exactly as we want it to. Let’s
fix that by implementing our game (Listing 39).

So the core of any game is that all players take turns.
We will use Python’s built-in itertools library to make
that easy. This library has a cycle function, which will
continue to return the same values over and over. All we
need to do is pass our list of player names into cycle().
Obviously, there are other ways to achieve this same
functionality, but this is probably the easiest option.

Next, we print the name of the player who is about to
roll and set the number of points earned during the turn
to zero. Since each player gets to choose to roll or hold
most of the time, we roll the die within a while loop. That
is to say, while the user chooses to roll, execute the
code block within the while statement.

The first step to that loop is to roll the die. Because
of the values that we specified in our test for the roll()
method, we know exactly what will come of each roll
of the die. Per the rules of Pig, we need to check if the
rolled value is a one. If so, the player loses all points
earned for the turn and it becomes the next player’s
turn. The break statement allows us to break out of the
while loop, but continue within the for loop.

If the rolled value is something other than one, we add
the value to the player’s points for the turn. Then we use

our roll_or_hold method to see if the user would like to
roll again or hold. When the user chooses to roll again,
action is set to ‘roll’, which satisfies the condition for
the while loop to iterate again. If the user chooses to
hold, action is set to ‘hold’, which does not satisfy the
while loop condition.

When a player’s turn is over, either from rolling a one
or choosing to hold, we add the points they earned dur-
ing their turn to their overall score. The for loop and
itertools.cycle function takes care of moving on to the
next player and starting all over again.

Let’s run our test to see if our code meets our expec-
tations (Listing 40).

Oh boy. This is not quite what we expected. First of
all, we see the output of all of the print functions in our
game, which makes it difficult to see the progression of
our tests. Additionally, our player scores did not quite
end up as we wanted them to.

Let’s fix the broken scores problem first. Notice that
George has many more points than we expected – he
ended up with 26 points instead of the 14 that he should
have earned. This suggests that he still earned points
for a turn when he shouldn’t have. Let’s inspect that
block of code: Listing 41.

Ah hah! We display that the player loses their turn
points when they roll a one, but we don’t actually have
code to do that. Let’s fix that: Listing 42. Now to verify
that this fixes the problem (Listing 43).

Listing 40. Broken implementation and print output in test
results

F......Now rolling: George

George rolled a 6 and now has 6 points for this turn

George rolled a 6 and now has 12 points for this turn

George rolled a 1 and lost 12 points

Now rolling: Bob

Bob rolled a 6 and now has 6 points for this turn

Bob rolled a 6 and now has 12 points for this turn

Bob rolled a 6 and now has 18 points for this turn

Bob rolled a 6 and now has 24 points for this turn

Now rolling: George

George rolled a 5 and now has 5 points for this turn

George rolled a 4 and now has 9 points for this turn

George rolled a 3 and now has 12 points for this turn

George rolled a 2 and now has 14 points for this turn

Now rolling: Bob

==

FAIL: test_gameplay (test_game.GameTest)

Users may play a game of Pig

--

Traceback (most recent call last):

 File “/usr/lib/python3.3/unittest/mock.py”, line

1087, in patched

 return func(*args, **keywargs)

 File “./test_game.py”, line 105, in test_gameplay

 ‘Bob’: 24

AssertionError: {‘George’: 26, ‘Bob’: 24} !=

{‘George’: 14, ‘Bob’: 24}

- {‘Bob’: 24, ‘George’: 26}

? ^^

+ {‘Bob’: 24, ‘George’: 14}

? ^^

--

Ran 7 tests in 0.009s

FAILED (failures=1)

Listing 41. The culprit

 if value == 1:

 print(‘{} rolled a 1 and lost {}

points’.format(player, turn_points))

 break

13/201378

Perfect. The scores end up as we expect. The only
problem now is that we still see all of the output of the
print function, which clutters our test output. There a
many ways to hide this output. Let’s use mock to hide it.

One option for hiding output with mock is to use a dec-
orator. If we want to be able to assert that certain strings
or patterns of strings will be printed to the screen, we
could use a decorator similar to what we did previously
with the input function:

@mock.patch(‘builtins.print’)

def test_something(self, fake_print):

Alternatively, if we don’t care to make any assertions
about what is printed to the screen, we can use a dec-
orator such as:

@mock.patch(‘builtins.print’, mock.Mock())

def test_something(self):

The first option requires an additional parameter to the
decorated test method while the second option requires
no change to the test method signature. Since we aren’t
particularly interested in testing the print function right
now, we’ll use the second option (Listing 44).

Let’s see if the test output has been cleaned up at all
with our updated test (Listing 45).

Isn’t mock wonderful? It is so very powerful, and we’re
only scratching the surface of what it offers.

Winning The Game
The final piece to our game is that one player must be
able to win the game. As it stands, our game will con-

Listing 42. The solution

 if value == 1:

 print(‘{} rolled a 1 and lost {}

points’.format(player, turn_points))

 turn_points = 0

 break

Listing 43. Acceptable implementation still with print output

.......Now rolling: George

George rolled a 6 and now has 6 points for this turn

George rolled a 6 and now has 12 points for this turn

George rolled a 1 and lost 12 points

Now rolling: Bob

Bob rolled a 6 and now has 6 points for this turn

Bob rolled a 6 and now has 12 points for this turn

Bob rolled a 6 and now has 18 points for this turn

Bob rolled a 6 and now has 24 points for this turn

Now rolling: George

George rolled a 5 and now has 5 points for this turn

George rolled a 4 and now has 9 points for this turn

George rolled a 3 and now has 12 points for this turn

George rolled a 2 and now has 14 points for this turn

Now rolling: Bob

--

Ran 7 tests in 0.007s

OK

Listing 44. Suppressing print output

 @mock.patch(‘builtins.print’, mock.Mock())

 def test_gameplay(self):

 “””Users may play a game of Pig”””

 INPUT.side_effect = [

 # player names

 ‘George’,

 ‘Bob’,

 ‘’,

 # roll or hold

 ‘r’, ‘r’, # George

 ‘r’, ‘r’, ‘r’, ‘h’, # Bob

 ‘r’, ‘r’, ‘r’, ‘h’, # George

]

 pig = game.Pig(*game.get_player_names())

 pig.roll = mock.Mock(side_effect=[

 6, 6, 1, # George

 6, 6, 6, 6, # Bob

 5, 4, 3, 2, # George

])

 self.assertRaises(StopIteration, pig.play)

 self.assertEqual(

 pig.get_score(),

 {

 ‘George’: 14,

 ‘Bob’: 24

 }

)

Listing 45. All tests pass with no print output

.......

--

Ran 7 tests in 0.007s

OK

en.sdjournal.org 79

TEST-DRIVEN DEVELoPMENT WITh PyThoN

Listing 46. Check that a player may indeed win the game

 @mock.patch(‘builtins.print’)

 def test_winning(self, fake_print):

 “””A player wins when they earn 100 points”””

 INPUT.side_effect = [

 # player names

 ‘George’,

 ‘Bob’,

 ‘’,

 # roll or hold

 ‘r’, ‘r’, # George

]

 pig = game.Pig(*game.get_player_names())

 pig.roll = mock.Mock(side_effect=[2, 2])

 pig.scores[‘George’] = 97

 pig.scores[‘Bob’] = 96

 pig.play()

 self.assertEqual(

 pig.get_score(),

 {

 ‘George’: 101,

 ‘Bob’: 96

 }

)

 fake_print.assert_called_with(‘George won the

game with 101 points!’)

Listing 47. Players currently cannot win

.......E

==

ERROR: test_winning (test_game.GameTest)

A player wins when they earn 100 points

--

Traceback (most recent call last):

 File “/usr/lib/python3.3/unittest/mock.py”, line

1087, in patched

 return func(*args, **keywargs)

 File “./test_game.py”, line 130, in test_winning

 pig.play()

 File “./game.py”, line 50, in play

 value = self.roll()

 File “/usr/lib/python3.3/unittest/mock.py”, line

846, in __call__

 return _mock_self._mock_call(*args, **kwargs)

 File “/usr/lib/python3.3/unittest/mock.py”, line

904, in _mock_call

 result = next(effect)

StopIteration

--

Ran 8 tests in 0.011s

FAILED (errors=1)

Listing 48. First attempt to allow winning

 def play(self):

 “””Start a game of Pig”””

 for player in cycle(self.players):

 print(‘Now rolling: {}’.format(player))

 action = ‘roll’

 turn_points = 0

 while action == ‘roll’:

 value = self.roll()

 if value == 1:

 print(‘{} rolled a 1 and lost

{} points’.format(player, turn_

points))

 turn_points = 0

 break

 turn_points += value

 print(‘{} rolled a {} and now has {}

points for this turn’.format(

 player, value, turn_points

))

 action = self.roll_or_hold()

 self.scores[player] += turn_points

 if self.scores[player] >= 100:

 print(‘{} won the game with {}

points!’.format(

 player, self.scores[player]

))

 return

13/201380

tinue indefinitely. There’s nothing to check when a play-
er’s score reaches or exceeds 100 points. To make our
lives easier, we’ll assume that the players have already
played a few rounds (so we don’t need to specify a bil-
lion input values or “random” roll values) (Listing 46).

The setup for this test is very similar to what we did
for the previous test. The primary difference is that we
set the scores for the players to be near 100. We also
want to check some portion of the screen output, so we
changed the method decorator a bit. nWe’ve introduced
a new call with our screen output check: Mock.assert_
called_with(). This handy method will check that the
most recent call to our mocked object had certain pa-
rameters. Our assertion is checking that the last thing
our print function is invoked with is the winning string.
What happens when we run the test as it is (Listing 47)?

Hey, there’s the StopIteration exception that we dis-
cussed a couple of times before. We’ve only specified
two roll values, which should be just enough to push
George’s score over 100. The problem is that the game

continues, even when George’s score exceeds the
maximum, and our mocked Pig.roll method runs out
of return values. We don’t want to use the TestCase.
assertRaises method here. We expect the game to
end after any player’s score reaches 100 points, which
means the Pig.roll method should not be called any-
more. Let’s try to satisfy the test (Listing 48).

After each player’s turn, we check to see if the play-
er’s score is 100 or more. Seems like it should work,
right? Let’s check (Listing 49).

Hmmm... We get the same StopIteration exception.
Why do you suppose that is? We’re just checking to see
if a player’s total score reaches 100, right? That’s true,
but we’re only doing it at the end of a player’s turn. We
need to check to see if they reach 100 points during
their turn, not when they lose their turn points or decide
to hold. Let’s try this again (Listing 50).

We’ve moved the total score check into the while
loop, after the check to see if the player rolled a one.
How does our test look now (Listing 51)?

Listing 49. Same error as before; players still cannot win

.......E

==

ERROR: test_winning (test_game.GameTest)

A player wins when they earn 100 points

--

Traceback (most recent call last):

 File “/usr/lib/python3.3/unittest/mock.py”, line

1087, in patched

 return func(*args, **keywargs)

 File “./test_game.py”, line 130, in test_winning

 pig.play()

 File “./game.py”, line 50, in play

 value = self.roll()

 File “/usr/lib/python3.3/unittest/mock.py”, line

846, in __call__

 return _mock_self._mock_call(*args, **kwargs)

 File “/usr/lib/python3.3/unittest/mock.py”, line

904, in _mock_call

 result = next(effect)

StopIteration

--

Ran 8 tests in 0.011s

FAILED (errors=1)

Listing 50. Winning check needs to happen elsewhere

 def play(self):

 “””Start a game of Pig”””

 for player in cycle(self.players):

 print(‘Now rolling: {}’.format(player))

 action = ‘roll’

 turn_points = 0

 while action == ‘roll’:

 value = self.roll()

 if value == 1:

 print(‘{} rolled a 1 and lost

{} points’.format(player, turn_

points))

 turn_points = 0

 break

 turn_points += value

 print(‘{} rolled a {} and now has {}

points for this turn’.format(

 player, value, turn_points

))

 if self.scores[player] + turn_points

>= 100:

 self.scores[player] += turn_points

 print(‘{} won the game with {}

points!’.format(

 player, self.scores[player]

))

 return

 action = self.roll_or_hold()

 self.scores[player] += turn_points

en.sdjournal.org 81

TEST-DRIVEN DEVELoPMENT WITh PyThoN

Playing From the Command Line
It would appear that our basic Pig game is now com-
plete. We’ve tested and implemented all of the basics of
the game. But how can we play it ourselves? We should
probably make the game easy to run from the command
line. But first, we need to describe our expectations in
a test (Listing 52). This test starts out much like our re-
cent gameplay tests by defining some return values for
our mocked input function. After that, though, things are
very much different. We see that multiple context man-
agers can be used with one with statement. It’s also
possible to do multiple nested with statements, but that
depends on your preference.

The first object we’re mocking is the built-in print func-
tion. Again, this way of mocking objects is very similar to
mocking with class or method decorators. Since we will
be invoking the game from the command line, we won’t
be able to easily inspect the internal state of our Pig game
instance for scores. As such, we’re mocking print so that
we can check screen output with our expectations.

We’re also patching our Pig.roll method as before,
only this time we’re using a new mock.patch.object
function. Notice that all of our uses of mock.patch thus
far have been passed a simple string as the first param-
eter. This time we’re passing an actual object as the first
parameter and a string as the second parameter.

Listing 51. Players may now win the game

........

--

Ran 8 tests in 0.009s

OK

Listing 52. Command line invocation

 def test_command_line(self):

 “””The game can be invoked from the command

line”””

 INPUT.side_effect = [

 # player names

 ‘George’,

 ‘Bob’,

 ‘’,

 # roll or hold

 ‘r’, ‘r’, ‘h’, # George

 # Bob immediately rolls a 1

 ‘r’, ‘h’, # George

 ‘r’, ‘r’, ‘h’ # Bob

]

 with mock.patch(‘builtins.print’) as fake_print, \

 mock.patch.object(game.Pig, ‘roll’) as die:

 die.side_effect = cycle([6, 2, 5, 1, 4, 3])

 self.assertRaises(StopIteration, game.main)

 # check output

 fake_print.assert_has_calls([

 mock.call(‘Now rolling: George’),

 mock.call(‘George rolled a 6 and now has 6

points for this turn’),

 mock.call(‘George rolled a 2 and now has 8

points for this turn’),

 mock.call(‘George rolled a 5 and now has

13 points for this turn’),

 mock.call(‘Now rolling: Bob’),

 mock.call(‘Bob rolled a 1 and lost 0

points’),

 mock.call(‘Now rolling: George’),

 mock.call(‘George rolled a 4 and now has 4

points for this turn’),

 mock.call(‘George rolled a 3 and now has 7

points for this turn’),

 mock.call(‘Now rolling: Bob’),

 mock.call(‘Bob rolled a 6 and now has 6

points for this turn’),

 mock.call(‘Bob rolled a 2 and now has 8

points for this turn’),

 mock.call(‘Bob rolled a 5 and now has 13

points for this turn’)

])

Listing 53. Expected failure

F........

==

FAIL: test_command_line (test_game.GameTest)

The game can be invoked from the command line

--

Traceback (most recent call last):

 File “/usr/lib/python3.3/unittest/mock.py”, line

1087, in patched

 return func(*args, **keywargs)

 File “./test_game.py”, line 162, in test_command_line

 self.assertRaises(StopIteration, game.main)

AssertionError: StopIteration not raised by main

--

Ran 9 tests in 0.013s

FAILED (failures=1)

13/201382

The mock.patch.object function allows us to mock
members of another object. Again, since we won’t have
direct access to the Pig instance, we can’t monkey patch
the Pig.roll the way we did previously. The outcome of
this method should be the same as the other method.

Being the lazy programmers that we are, we’ve cho-
sen to use the itertools.cycle function again to con-
tinuously return some value back for each roll of the die.
Since we don’t want to specify roll-or-hold values for an
entire game of Pig, we use TestCase.assertRaises to say
we expect mock to raise a StopIteration exception when
there are no additional return values for the input mock.

I should mention that testing screen output as we’re
doing here is not exactly the best idea. We might change
the strings, or we might later add more print calls. Ei-
ther case would require that we modify our test itself,
and that’s added overhead. Having to maintain produc-
tion code is a chore by itself, and adding test case main-
tenance to that is not exactly appealing.

That said, we will push forward with our test this way
for now. We should run our test suite now, but be sure to
mock out the new main function in game.py first (Listing 53).

We haven’t implemented our main function yet, so
none of the mocked input values are consumed, and no
StopIteration exception is raised. Just as we expect for
now. Let’s write some code to launch the game from the
command line now (Listing 54). Hey, that code looks pretty
familiar, doesn’t it? It’s pretty much the same code we’ve
used in previous gameplay test methods. Awesome!

There’s one small bit of magic code that we’ve added
at the bottom. That if statement is the way that you al-
low a Python script to be invoked from the command
line. Let’s run the test again to make sure the main func-
tion does what we expect (Listing 55).

Listing 54. Basic command line entry point

def main():

 “””Launch a game of Pig”””

 game = Pig(*get_player_names())

 game.play()

if __name__ == ‘__main__’:

 main()

Listing 55. All tests pass

.........

--

Ran 9 tests in 0.014s

OK

Beauty! At this point, you should be able to invoke your
very own Pig game on the command line by running:

python game.py

Isn’t that something? We waited to manually run the
game until we had written and satisfied tests for all
of the basic requirements for a game of Pig. The first
time we play it ourselves, the game just works!

Reflecting on our Pig
Now that we’ve gone through that exercise, we need to
think about what all of this new-found TDD experience
means for us. All tests passing absolutely does not mean
the code is bug-free. It simply means that the code meets
the expectations that we’ve described in our tests. There
are plenty of situations that we haven’t covered in our
tests or handled in our code. Can you think of anything
that is wrong with our game right now? What will hap-
pen if you don’t enter any player names? What if you
only enter one player name? Will the game be able to
handle a large number of players?

We can make assumptions and predictions about
how the code will behave under such conditions, but
wouldn’t it be nice to have a high level of confidence
that the code will handle each scenario as we expect?

What Now?
Now that we have a functional game of Pig, here are
some tasks that you might consider implementing to
practice TDD.

• accept player names via the command line (without
the prompt),

• bail out if only one player name is given,
• allow the maximum point value to be specified on

the command line,
• allow players to see their total score when choosing

to roll or hold,
• track player scores in a database,
• print the runner-up when there are three or more

players,
• turn the game into an IRC bot.

The topics covered in this article should have given
you a good enough foundation to write tests for each
one of these additional tasks.

joSh VANDERLINDEN
Josh VanderLinden is a life-long technology enthusiast, who
started programming at the age of ten. Josh has worked primar-
ily in web development, but he also has experience with network
monitoring and systems administration. He has recently gained
a deep appreciation for automated testing and TDD.

13/201384

Python Iterators, Iterables,
and the Itertool Module

Python makes a distinction between iterables and iterators, it is
quite essential to know the difference between them. Iterators
are stateful objects they know how far through their sequence
they are. Once they reach their thats is it. Iterables are able to
create iterators on demand. Itertool modules includes a set of
functions for working with iterable datasets.

M ost of us are familiar with how Python For loops
works, for a wide range of applications you can
just do For items in container: do something.

But what happens under the hood and how could we
create containers of our own? Well let us dive into it
and see.

In Python Iterables and Iterators have distinct mean-
ings. Iterables are anything that can be looped over. It-
erables define the __iter__ method which returns the
iterator or it may have the __getitem__ method for in-
dexed lookup (or raise an IndexError when indexes
are no longer valid). So an iterable type is something
you can treat abstractly as a series of values, like a
list (each item) or a file (each line). One iterable can
have many iterators: a list might have backwards and
forwards and every_n, or a file might have a lines (for
ASCII files) and bytes (for each byte) depending on the
file’s encoding. Iterators are objects that support the it-
erator protocol, which means that the __iter__ and the
next() (__next__ in Python 3>) have to be defined. The
__iter__ method returns itself and is implicitly called at
the start of the loop and the next() method returns the
next value every time it is invoked. In fewer words: an
iterable can be given to a for loop and an iterator dic-
tates what each iteration of the loop returns (Listing 1
and Listing 2).

Some types like file are iterables that are also their own
iterators, which is a common source of confusion. But that
arrangement actually makes sense: the iterator needs to
know the details of how files are read and buffered, so it
might as well live in the file where it can access all that in-
formation without breaking the abstraction (Listing 3).

Why the distinction? An iterable object is just some-
thing that it might make sense to treat as a collection,
somehow, in an abstract way. An iterator lets you spec-
ify exactly what it means to iterate over a type, without
tying that type’s “iterableness” to any one specific itera-
tion mode. Python has no interfaces, but this concept
– separating interface (“this object supports X”) from
implementation (“doing X means Y and Z”) – has been
carried over from languages that do, and it turns out to
be very useful.

Itertools Module
The itertools module defines number of fast and highly
efficient functions for working with sequence like data-
sets. The reason for functions in itertools module to be
so efficient is because all the data is not stored in the
memory, it is produced only when it is needed, which re-
duces memory usage and thus reduces side effects of
working with huge datasets and increases performance.
chain(iter1, iter2, iter3.....) returns a single

iterator which is the result of adding all the iterators
passed in the argument.

>>> from itertools import *

>>> for i in chain([‘a’, ‘b’, ‘c’], [1, 2, 3],

[‘x’, ‘y’, ‘z’]):

 print i,

abc123xyz

combinations(iterable, n) takes two arguments an it-
erable and length of combination and returns all pos-
sible n length combination of elements in that iterable.

en.sdjournal.org 85

PyThoN ITERAToRS

>>> for i in itertools.combinations([‘a’, ‘b’, ‘c’], 2):

 print i,

(‘a’, ‘b’) (‘a’, ‘c’) (‘b’, ‘c’)

combinations _ with _ replacement(iterable, n) is sim-
ilar to combinations but it allows individual elements to
have successive repeats.

>>> for i in itertools.combinations_with_

replacement([‘a’, ‘b’, ‘c’], 2):

 print i,

(‘a’, ‘a’) (‘a’, ‘b’) (‘a’, ‘c’) (‘b’, ‘b’) (‘b’, ‘c’)

(‘c’, ‘c’)

compress(data, selector) takes two iterables as argu-
ments and returns an iterator with only those values in
data which corresponds to true in the selector.

>>> for i in itertools.compress([‘lion’, ‘tiger’,

‘panther’, ‘leopard’], [1, 0, 0, 1]):

 print i,

lion leopard

count(start, step) both start and stop arguments are
optional, the default start argument is 0. It returns con-
secutive integers if no step argument is provided and
there is no upper bound so you will have t provide a
condition to stop the iteration.

>>> for i in itertools.count(1, 2):

 if i > 10:

 break

 print i,

1 3 5 7 9

cycle(iterable) returns an iterator that indefinitely cy-
cles over the contents of the iterable argument it is giv-
en. It can consume a lot of memory if the argument is
a huge iterable.

>>> p = 0

>>> for i in itertools.cycle([1, 2, 3]):

 p += 1

 if p > 20: break

 print i,

12312312312312312312

dropwhile(condition, iterator) returns an iterator af-
ter the condition becomes false for the very first time.
After the condition becomes false it will return the rest
of the values in the iterator till it gets exhausted.

>>> for i in itertools.dropwhile(lambda x: x<5, [1, 2,

3, 4, 5, 6, 7, 8, 9]):

 print i,

5 6 7 8 9

Listing 1. Under the hood for loop looks like this

Iterable = [1, 2, 3]

iterator = iterable.__iter__()

try:

 while True:

 item = iterator.__next__()

 # Loop body

 print “iterator returned: %d” % item

 except StopIteration:

 pass # End loop

Listing 2. For example, a list and string are iterables but they are
not iterators

>>> a = [1, 2, 3, 4, 5]

>>> a.__iter__

<method-wrapper ‘__iter__’ of list object at

0x02A16828>

>>> a.next()

Traceback (most recent call last):

 File “<pyshell#76>”, line 1, in <module>

 a.next()

AttributeError: ‘list’ object has no attribute ‘next’

>>> iter(a)

<listiterator object at 0x02A26DD0>

>>> iter(a).next()

Listing 3. Example of a file object

Not the real implementation

class file(object):

 def __iter__(self):

 # Called when something asks for this type’s

iterator.

 # this makes it iterable

 return self

 def __next__(self):

 # Called when this object is queried for its

next value.

 # this makes it an iterator.

 If self.has_next_line():

 return self.get_next_line()

 else:

 raise StopIteration

 def next(self):

 # Python 2.x compatibility

 return self.__next__()

13/201386

groupby() returns a set of values group by a common key.

>>> for key, igroup in itertools.groupby(xrange(12),

lambda x: x/5):

 print key, list(igroup)

0 [0, 1, 2, 3, 4]

1 [5, 6, 7, 8, 9]

2 [10, 11]

ifilter(condition, iterable) will return an iterator for
those arguments in the iterable for which the condition
is true, this is different from dropwhile, which returns
all the elements after the first condition is false, this
will test the condition for all the elements.

>>> for i in itertools.ifilter(lambda x: x>5, [1, 2, 3,

4, 5, 6, 7, 8, 2.5, 3.5]):

 print i,

6 7 8

imap(function, iter1, iter2, iter3,) will return
an iterator which is a result of the function called on
each iterator. It will stop when the smallest iterator gets
exhausted.

>>> for i in imap(lambda x, y: (x, y, x*y), xrange(5),

xrange(5, 8)):

 print ‘%d * %d = %d’ %i

0 * 5 = 0

1 * 6 = 6

2 * 7 = 14

islice(iterable, start, stop, step) will return an iter-
ator with selected items from the input iterator by index.
Start and step argument will default to 0 if not given.

>>> for i in itertools.islice(count(), 20, 30, 2):

 print i,

20 22 24 26 28

izip(iter1, iter2, iter3....) will return an izip ob-
ject whose next() will return a tuple with i-th ele-
ment from all the iterables given as argument. It will
raise a StopIteration error when the smallest iterable
is exhausted.

>>> for i in izip([1, 2, 3], [‘a’, ‘b’, ‘c’], [‘z’, ‘y’]):

 print i

(1, ‘a’, ‘z’)

(2, ‘b’, ‘y’)

izip _ longest(iter1, iter2,...., fillvalue=None) is
similar to izip but will iterator till the longest iterable
gets exhausted and when the shorter iterables are ex-
hausted then fallvalue is substituted in their place.

>>> for i in itertools.izip_longest([1, 2, 3], [‘a’,

‘b’, ‘c’], [‘z’, ‘y’], fillvalue=’hello’):

 print i

(1, ‘a’, ‘z’)

(2, ‘b’, ‘y’)

(3, ‘c’, ‘hello’)

permutations(iterable, n) will return n length permu-
tations of the input iterable.

>>> for i in itertools.permutations([1, 2, 3, 4], 2):

 print i,

(1, 2) (1, 3) (1, 4) (2, 1) (2, 3) (2, 4) (3, 1) (3, 2)

(3, 4) (4, 1) (4, 2) (4, 3)

product(iter1, iter2,....) will return Cartesian prod-
uct of the input iterables.

>>> for i in itertools.product([1, 2, 3], [‘a’, ‘b’, ‘c’]):

 print i,

(1, ‘a’) (1, ‘b’) (1, ‘c’) (2, ‘a’) (2, ‘b’) (2, ‘c’)

(3, ‘a’) (3, ‘b’) (3, ‘c’)

repeat(object, n) will return the object for n number of
times, if n is not given then it returns the object endlessly

>>> for i in itertools.repeat(‘a’, 5):

 print i,

a a a a a

starmap(function, iterable) returns an iterator whose
elements are result of mapping the function to the ele-
ments of the iterable. It is used instead of imap when the
elements of the iterable is already grouped into tuples.

>>> for i in itertools.starmap(lambda x, y: x**y,

[(2, 3), (4, 2)]):

 print i,

8 16

>>> for i in itertools.imap(lambda x, y: x**y, [(2, 3),

(4, 2)]):

 print i,

Traceback (most recent call last):

 File “<stdin>”, line 1, in <module>

TypeError: <lambda>() takes exactly 2 arguments (1 given)

takewhile(condition, iterable) this function is opposite
of dropwhile, it will return an iterators whose values are
items from the input iterator until the condition is true. It
will stop as soon as the first value becomes false.

>>> for i in itertools.takewhile(lamdba x: x<5,

[1, 2, 3, 4, 5, 6, 7, 2, 3, 4]):

PyThoN ITERAToRS

 print i,

1 2 3 4

tee(iterator, n=2) will return n (defaults to 2) indepen-
dent iterators of the input iterator.

>>> s = 0

>>> p = ‘123ab’

>>> for i in itertools.tee(p, 3):

 print ‘iterator %d: ‘ %s,

 s += 1

 for q in i:

 print q,

 print ‘\n’

iterator 0: 1 2 3 a b

iterator 1: 1 2 3 a b

iterator 2: 1 2 3 a b

Summary
So I believe by now you must have a clear understand-
ing of Python iterators and iterables. The huge advan-

tage of iterators is that they have an almost constant
memory footprint. The itertools module can be very
handy in hacking competitions because of their efficien-
cy and speed.

SAAD BIN AkhLAq
Saad Bin Akhlaq is a software engineer at Plivo communica-
tions pvt. Ltd., where he is working on automating the infra-
structure and debugging into issues if they arise. In his free
time he loves sketching and photography. Visit Saad’s blog at
saadbinakhlaq.wordpress.com and you can also contact him
directly at saadbinakhlaq@outlook.com.

a d v e r t i s e m e n t

mailto:mailto:saadbinakhlaq%40outlook.com?subject=

DON’T BE LEFT OUT

Join theIRevolution

www.theIRapp.com

THIS
COULD BE

YOU

theIRapp_Dont-be-left-out_AD_8.5x11_NO QR v1.indd 1 7/3/13 7:19 PM

	Cover
	Editor’s Note
	contents
	Python: A Guide for Beginners
	Starting Python Programming and the Use of Docstring and dir()
	Beginning with Django
	Better Django Unit Testing Using Factories Instead of Fixtures
	Using Python Fabric to Automate GNU/Linux Server Configuration Tasks
	The Python Logging Module is Much Better Than Print Statements
	Python, Web Security and Django
	Building a Console 2-player Chess Board Game in Python
	Write a Web App and Learn Python Background and Primer for Tackling the Django Tutorial
	Efficient Data and Financial Analytics with Python
	Test-Driven Development With Python
	Python Iterators, Iterables, and the Itertool Module

	uat:
	edu 5: Off

